Name:

Math 253 Calculus III (Bueler)

Thursday, 6 April 2023

Midterm Exam 2

No book, notes, electronics, calculator, or internet access. 100 points possible. 70 minutes maximum.

1. (10 pts) Find an equation of the tangent plane of the surface $z = \ln(10x^2 + 2y^2 + 1)$ at the point P(0,0,0).

2. (a) (5 pts) Suppose f(u, v) is a function of two variables, and that, in turn, u = u(r, s) and v = v(r, s). Write down the chain rule which computes $\frac{\partial f}{\partial s}$:

$$\frac{\partial f}{\partial s} =$$

(b) (5 pts) Specifically suppose f(u, v) = uv, $u(r, s) = r \cos s$, and $v(r, s) = r \sin s$. Compute the following partial derivative, and express your answer as a simplified expression in variables r, s.

 $\frac{\partial f}{\partial s} =$

- **3.** Consider the function $f(x, y) = x^3 + y^3 12x 15y + 7$.
- (a) (5 pts) Compute the gradient:

 $\nabla f(x,y) =$

(b) $(5 \ pts)$ Find all of the critical points. Write each one as a pair (x, y).

(c) $(5 \ pts)$ Use the second derivative test to classify all of the critical points, as local maximum, local minimum, or saddle point.

(d) $(3 \ pts)$ Consider the square $D = [-10, 10] \times [-10, 10]$. Does the absolute maximum of f(x, y) over D occur at one of the critical points found in part (b)? State the answer **yes** or **no**, and explain in one sentence.

(*Hint.* You do not need to find the absolute maximum! But consider values of f(x, y) when answering.)

4. (a) (5 pts) Sketch the region $D = \{(x, y) \mid -1 \le y \le 0, \ 0 \le x \le 1 - y^2\}.$

(b) $(10 \ pts)$ Compute and simplify the double integral over the region D in part (a):

$$\iint_D xy \, dA =$$

5. (10 pts) Set up, and then evaluate, a double integral for the area of one leaf of the rose $r = \sin(2\theta)$, as shown in the figure.

6. $(10 \ pts)$ Define $B = \{(x, y, z) \mid 0 \le x \le 1, 0 \le y \le \pi, -1 \le z \le 1\}$, a rectangular solid box. Evaluate the triple integral:

$$\iiint_B x \sin y \, dV =$$

7. (10 pts) The region $E = \{(x, y, z) | x^2 + y^2 \le 1, x \ge 0, x \ge y, -1 \le z \le 1\}$ is shown below. Use cylindrical coordinates to evaluate the triple integral $\iiint_E f(x, y, z) dV$ if f(x, y, z) = xy.

8. (10 pts) Find the average value of the function $f(x, y, z) = x^2 + y^2 + z^2$ over the unit sphere $S = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}.$

(*Hints.* What coordinates would make this easiest? Yes, you may use the fact that the volume of the unit sphere is $4\pi/3$; there is no need to justify it.)

9. (7 pts) Use spherical coordinates to fully set up a triple integral for the volume which is outside the cone $z^2 = x^2 + y^2$ but inside the unit sphere $x^2 + y^2 + z^2 = 1$. Do not evaluate the integral. (*Hint.* Start by drawing a decent sketch!)

Extra Credit. (3 pts) The equation $x^2 + y^2 = 9$ is a cylinder. Convert this equation to spherical coordinates, and write your simplified answer in the form $\rho = f(\varphi, \theta)$.

BLANK SPACE