o SOoLUTTONS

Math 253 Calculus III (Bueler) Thursday, 23 February 2023

Midterm Exam 1

No book, notes, electronics, calculator, or internet access. 100 points
possible. 70 minutes maximum.

1. Suppose we have three vectors, a=1i—j, b=j4+ 3k, ¢ =—i+ 2j— 4k. Compute the following
quantities which are either scalars or vectors. You can write the vectors using either component notation
or standard unit vector notation.
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) (10 pts)  Find a general equation of the plane through the three points P(3,—1,2), Q(1,0,1),
0,—1,1). Express your answer in the form az + by + cz +d = 0.
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Consider the same three points as 1 part (a). Find the area of the triangle PQR.
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3. Suppose z = In(xy + y*). Compute the following partial derivatives. There is no need to simplify
your answers.
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4. (5 pts) Find and sketch (shade in) the domain of the function f(z,y) = /22 + y? — 9. Fill in the
set notation below.
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6. (10 pts)  Suppose that a moving particle has position function r(t) = (™', ¢,¢?). Calculate the
tangent line to the curve r(¢) at t = 1. (Hint. The answer can be vector-valued or parametric.)
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7. (5 pts)  Compute the arc length of the helix r(t) = (cost,sint,t) from ¢t = -2 to t = 0.
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s= (" 2wt = S (Smttrcostrl dt

= (P 7 dt == § 4= =2

- #285

8. (5 pts)  Write the curve (graph) y = f(z) as a vector-valued curve r(t).
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10. (a) (5 pts)  Find T(t), the unit tangent vector, for the circle r(t) = (3 cost,3sint).
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(b) (5 pts)  Compute the curvature of the curve r(¢) in part (a), at the point ¢t = 0.
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Extra Credit. (3 pts)  Show that the following limit does not exist:
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11. (5 pts)  Are the two planes z — 2y + 3z = 5 and —2x + 4y — 6z = 0 parallel? If so, explain why.
If not, find the angle between the planes.
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12. (10 pts)  Find the distance from the point P(0,0,1) to the plane x + 2y + 3z = 4. (Hint. To
start, draw a sketch and find a concrete point which is in the plane. Now, what vectors do you know?)
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You may find the following curvature formulas useful. However, there are many other formulas, not listed
here, which you should have in memory.

K(s) = ‘ %

K(t) = |‘l|§<(;))|\’| for curves r(t)
@ or curves y = f(x

k(z) = 0t (222 f y = f(z)
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