Midterm Exam 1
No book, notes, electronics, calculator, or internet access. 100 points possible. 70 minutes maximum.

1. Suppose we have three vectors, $\mathbf{a}=\mathbf{i}-\mathbf{j}, \quad \mathbf{b}=\mathbf{j}+3 \mathbf{k}, \mathbf{c}=-\mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$. Compute the following quantities which are either scalars or vectors. You can write the vectors using either component notation or standard unit vector notation.
(a) $(5 \mathrm{pts}) \quad(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}=$

$$
\begin{aligned}
& \vec{a} \cdot \vec{b}=\langle 1,-1,0\rangle \cdot\langle 0,1,3\rangle=-1 \\
& (\vec{a} \cdot \vec{b}) \vec{c}=-\langle-1,2,-4\rangle=\langle 1,-2,4\rangle
\end{aligned}
$$

(b) $(5 \mathrm{pts})$
a unit vector in the direction of \mathbf{c} :

$$
\|\vec{c}\|=\sqrt{1^{2}+2^{2}+4^{2}}=\sqrt{21}
$$

(c) (5 pts) the angle between vectors \mathbf{a} and $\mathbf{b}: \quad \theta=$ $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|\|\vec{b}\|}=\frac{-1}{\sqrt{2} \sqrt{1^{2}+3^{2}}}=\frac{-1}{\sqrt{2} \sqrt{2} \sqrt{5}}$

2. (a) (10 pts) Find a general equation of the plane through the three points $P(3,-1,2), Q(1,0,1)$,

$$
\overrightarrow{P Q}=\langle-2,1,-1\rangle
$$

$$
\stackrel{\rightharpoonup}{P R}=\langle-3,0,-1\rangle
$$

$$
\vec{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-2 & 1 & -1 \\
-3 & 0 & -1
\end{array}\right|
$$

$$
=(-1) \hat{\imath}-(2-3) \hat{\jmath}+(+3) \hat{k}=\langle-1,+1,+3\rangle
$$

plane is $\vec{n} \cdot \overrightarrow{P S}=0$

$$
\begin{gathered}
\langle-1,1,3\rangle \cdot\langle x-3, y+1, z-2\rangle=0 \\
-(x-3)+y+1+3 z-6=0 \\
-x+y+3 z-2=0
\end{gathered}
$$

(b) (5 pts) Consider the same three points as in part (a). Find the area of the triangle $P Q R$.

$$
\begin{aligned}
A_{\Delta} & =\frac{1}{2}\|\overrightarrow{P Q} \times \overrightarrow{P R}\| \\
& =\frac{1}{2}\|\vec{n}\|=\frac{1}{2} \sqrt{1^{2}+1^{2}+3^{2}} \\
& =\frac{\sqrt{11}}{2}
\end{aligned}
$$

3. Suppose $z=\ln \left(x y+y^{4}\right)$. Compute the following partial derivatives. There is no need to simplify your answers.
(4) (x) (y, (x) $) \frac{0,}{\bar{x}}=\frac{1}{x y+y^{4}} \cdot\left(x+4 y^{3}\right)$

(v) (b nat) $\frac{\partial z}{\partial a z=}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)=\frac{1 \cdot\left(x y+y^{4}\right)-\left(x+4 y^{3}\right)}{\left(x y+y^{4}\right)^{2}}$

4. (5 pts) Find and sketch (shade in) the domain of the function $f(x, y)=\sqrt{x^{2}+y^{2}-9}$. Fill in the set notation below.

5. (5 pts) Find a vector equation of the line passing through the two points $P(4,0,5)$ and $Q(2,3,1)$.

$$
\begin{aligned}
\vec{r}_{0} & =\langle 4,0,5\rangle \\
\vec{V} & =\overrightarrow{P Q}=\langle-2,3,-4\rangle \\
\frac{\vec{r}(t)}{} & =\vec{r}_{0}+t \vec{v} \\
& =\langle 4-2 t, 3 t, 5-4 t\rangle
\end{aligned}
$$

6. (10 pts) Suppose that a moving particle has position function $\mathbf{r}(t)=\left\langle e^{-t}, t, t^{2}\right\rangle$. Calculate the tangent line to the curve $\mathbf{r}(t)$ at $t=1$. (Hint. The answer can be vector-valued or parametric.)

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\left\langle-e^{-t}, 1,2 t\right\rangle \\
& \vec{r}_{0}=\vec{r}(1)=\left\langle e^{-1}, 1,1\right\rangle \\
& \vec{r}=\vec{r}^{\prime}(1)=\left\langle-e^{-1}, 1,2\right\rangle \\
& \vec{r}(t) \\
& =\vec{r}_{0}+t \vec{v} \\
& =\left\langle\frac{1}{e}-\frac{1}{e} t, 1+t, 1+2 t\right\rangle \\
& \\
& =\left\langle\frac{1}{e}(1-t), 1+t, 1+2 t\right\rangle
\end{aligned}
$$

7. (5 pts) Compute the arc length of the helix $\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle$ from $t=-2$ to $t=0$.

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\langle-\sin t, \cos t, 1\rangle \\
& S= \int_{-2}^{0}\left\|\vec{r}^{\prime}(t)\right\| d t=\int_{-2}^{0} \sqrt{\sin ^{2} t+\cos ^{2} t+1} d t \\
&= \int_{-2}^{0} \sqrt{2} d t=\sqrt{2} \int_{-2}^{0} d t=\sqrt{2} \cdot 2 \\
&=2 \sqrt{2}
\end{aligned}
$$

8. (5 pts) Write the curve (graph) $y=f(x)$ as a vector-valued curve $\mathbf{r}(t)$.

$$
\begin{aligned}
& x(t)=t \\
& y(t)=f(t)
\end{aligned}
$$

so

$$
\dot{\vec{r}}(t)=\langle t, f(t)\rangle
$$

$$
\begin{aligned}
& \text { 9. (5 } \mathrm{p} \text { ts) Comptut the limit: }
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{(x, y) \rightarrow(1,1)} \frac{x}{y+1}=\frac{1}{1+1}=\frac{1}{2}
\end{aligned}
$$

10. (a) (5 pts) Find $\mathbf{T}(t)$, the unit tangent vector, for the circle $\mathbf{r}(t)=\langle 3 \cos t, 3 \sin t\rangle$.

$$
\begin{aligned}
\vec{r}^{\prime}(t) & =\langle-3 \sin t, 3 \cos t\rangle \\
\vec{T}(t) & =\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}=\frac{\langle-3 \sin t, 3 \cos t\rangle}{\sqrt{3^{2} \sin ^{2} t+3^{2} \cos ^{2} t}} \\
& =\frac{\langle-3 \sin t, 3 \cos t\rangle}{3}=\langle-\sin t, \cos t\rangle
\end{aligned}
$$

(b) (5 pts) Compute the curvature of the curve $\mathbf{r}(t)$ in part (a), at the point $t=0$.
the circle has radius $R=3$ so curvature is

$$
X=\frac{1}{R}=\frac{1}{3}
$$

[or:

$$
\left.K(t)=\frac{\left\|\vec{T}^{\prime}(t)\right\|}{\left\|\vec{r}^{\prime}(t)\right\|}=\cdots=\frac{1}{3} \quad\right]
$$

Extra Credit. (3 pts) Show that the following limit does not exist:
(8) $\lim _{x, y, m)} \frac{2 x y}{3 x^{2}+y^{2}}$
a long $y=0$: $\lim _{(x, 0) \rightarrow(0,0)} \frac{0}{3 x^{2}+0}=0$
along $y=x: \lim _{(x, x) \rightarrow(0,0)} \frac{2 x^{2}}{3 x^{2}+x^{2}}=\frac{1}{2}$
but \otimes is an "any direction" limit, so it does not exist
11. (5 pts) Are the two planes $x-2 y+3 z=5$ and $-2 x+4 y-6 z=0$ parallel? If so, explain why.

$$
\left.\begin{array}{l}
\vec{n}_{A}=\langle 1,-2,3\rangle \\
\vec{n}_{B}=\langle-2,4,-6\rangle
\end{array}\right\} \text { so } \quad \vec{n}_{B}=-2 \vec{n}_{A},
$$

thus the planes are parallel
[or compute $\vec{n}_{A} \times \vec{n}_{B}=\overrightarrow{0}$ or compute $\left.\cos \theta=\frac{\vec{n}_{A} \cdot \vec{n}_{B}}{\left\|\vec{n}_{A}\right\|\left\|\vec{n}_{B}\right\|}=-1\right]$
12. (10 pts) Find the distance from the point $P(0,0,1)$ to the plane $x+2 y+3 z=4$. (Hint. To
start, draw a sketch and find a concrete point which is in the plane. Now, what vectors do you know?) $Q(4,0,0)$ is in plane

$$
\stackrel{\rightharpoonup}{n}=\langle 1,2,3\rangle
$$

$$
\overrightarrow{Q P}=\langle-4,0,1\rangle
$$

$$
d=\left|\operatorname{comp}_{\vec{n}} \overrightarrow{Q P}\right|=\left|\frac{\overrightarrow{Q P} \cdot \vec{n}}{\|\vec{n}\|}\right|=\left|\frac{-4+0+3}{\sqrt{1^{2}+2^{2}+3^{2}}}\right|
$$

$$
=\left(\frac{1}{\sqrt{14}}\right.
$$

You may find the following curvature formulas useful. However, there are many other formulas, not listed here, which you should have in memory.

$$
\begin{array}{rlr}
\kappa(s) & =\left\|\frac{d \mathbf{T}}{d s}\right\| & \\
\kappa(t) & =\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|} & \text { for curves } \mathbf{r}(t) \\
\kappa(x) & =\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+f^{\prime}(x)^{2}\right)^{3 / 2}} & \text { for curves } y=f(x)
\end{array}
$$

BLANK SPACE

