Final Exam
No book, electronics, calculator, or internet access. $\frac{1}{2}$ sheet of notes allowed; double-sided okay! 125 points possible. 120 minutes maximum.

1. (8 pts) Match the vector fields \mathbf{F} with the plots. Write labels (a) through (d) in the spaces
construct length and direction

(a)

constant bout thy radially inward

(d)
2. (10 pts) Determine whether \mathbf{F} is a conservative vector field. If it is, find f so that $\mathbf{F}=\nabla f$.

$$
\mathbf{F}(x, y)=\left(y e^{x}+\sin y\right) \mathbf{i}+\left(e^{x}+x \cos y\right) \mathbf{j} \Rightarrow \wp_{\mathbf{N}} \mathbf{Q}
$$

$$
\begin{aligned}
& P_{y}=e^{x}+\cos y \\
& Q_{x}=e^{x}+\cos y
\end{aligned}
$$

yes, conservation

$$
\begin{aligned}
f_{x}=P & =y e^{x}+\sin y \\
f(x, y) & =y e^{x}+x \sin y+g(y) \\
e^{x}+x \cos y=Q=f_{y} & =e^{x}+x \cos y+g^{\prime}(y) \Leftrightarrow g^{\prime}(y)=0 \\
& \Leftrightarrow y(y)=c \\
f(x, y) & =y e^{x}+x \sin y
\end{aligned}
$$

$$
P=x^{2}+y, Q=3 x-y^{2}
$$

3. (10 pts) Suppose $\mathbf{F}(x, y)=\left\langle x^{2}+y, 3 x-y^{2}\right\rangle$. Calculate $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ for any positively-oriented, closed, simple curve C enclosing a region D which has area 6. (Hint. Green's Theorem)

$$
\begin{align*}
& \oint_{c} \vec{F} \cdot d \vec{r}=\oint_{c} P d x+Q d y \stackrel{G T}{=} \iint_{D} Q_{x}-P_{y} d A \\
&=\iint_{D} 3-1 d A=2 A_{D}=12
\end{align*}
$$

4. (10 pts) Evaluate the line integral if C is the line segment from $(0,0)$ to $(5,4)$:

$$
\begin{aligned}
& \int_{C} x e^{e^{y} d s}=\int_{0}^{1} x(t) e^{y(t)} \frac{d s}{d t} d t \\
& \uparrow \vec{r}(t)=t\langle 5,4\rangle \\
& 0 \leq t \leq 1 \\
& =\int_{0}^{1} 5 t e^{4 t} \sqrt{41} d t \\
& \vec{r}^{\prime}(t)=\langle 5,4\rangle \\
& \left\|\vec{r}^{\prime}(t)\right\|=\sqrt{25+16} \\
& =5 \sqrt{41} \int_{0}^{1} t e^{4 t} d t a\left\{\begin{array}{l}
\text { iterate bypants! } \\
u=t \\
=5=\frac{1}{4} e^{4 t} \\
d u=d t \quad d v=e^{4 t} d t
\end{array}\right. \\
& \left.=5 \sqrt{41}\left(\frac{1}{4} t e^{4 t}\right]_{0}^{1}-\int_{0}^{1} \frac{1}{4} e^{4 t} d t\right) \\
& =5 \sqrt{41}\left(\frac{1}{4} e^{4}-\frac{1}{16}\left[e^{4 t}\right]_{0}^{\prime}\right)=5 \sqrt{41}\left(\frac{1}{4} e^{4}-\frac{1}{16} e^{4}+\frac{1}{16}\right) \\
& =5 \sqrt{44}\left(\frac{3}{16} e^{4}+\frac{1}{16}\right)
\end{aligned}
$$

5. Consider the closed surface S which is formed by the equations $x^{2}+y^{2}=4, z=0$, and $z=1$.
(a) (4 pts) Sketch the surface S. (Remember to label the axes and indicate scale on each axis. Sketch reasonably large!)

(b) (6pts) Now suppose $\mathbf{F}=\left\langle x, y, z^{2}-1\right\rangle$ is a vector field. Use the divergence theorem to compute

$$
\begin{aligned}
& \oiint_{s}^{F \cdot N d S}=\iiint_{E} \nabla \cdot \vec{F} d V=\iiint_{E} 1+1+2 z d V \\
= & 2 \int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{1} 1+z r d z d r d \theta=4 \pi\left(\int_{0}^{2} r d r\right)\left(\int_{0}^{1} 1+z d z\right) \\
= & 4 \pi \cdot \frac{2^{2}}{2} \cdot\left[z+\frac{z^{2}}{2}\right]_{0}^{1}=8 \pi\left(1+\frac{1}{2}\right)=8 \pi \cdot \frac{3}{2} \\
= & 12 \pi
\end{aligned}
$$

6. (8 pts) Find a unit vector that is orthogonal to both $\mathbf{i}+\mathbf{j}$ and $\mathbf{i}+\mathbf{k}$.

$$
=\langle 1,-1,-1\rangle
$$

$$
\begin{aligned}
& \vec{v}=\langle 1,1,0\rangle \times\langle 1,0,1\rangle= \\
& \left|\begin{array}{lll}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right| \\
& \vec{u}=\frac{\vec{v}}{\|\vec{v}\|}=\frac{\langle 1,-1,-1\rangle}{\sqrt{3}}=\left\langle\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right\rangle
\end{aligned}
$$

7. (a) (4 pts) Sketch the solid which is above the cone $z=\sqrt{x^{2}+y^{2}}$ and inside the sphere $x^{2}+y^{2}+z^{2}=1$. (Label the axes and indicate scale on each axis. Sketch reasonably large!)

(b) (6 pts) Use spherical coordinates to find the volume of the solid in part (a).

$$
V=\iiint_{E} 1 d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{1} \rho^{2} \sin \phi d \rho d \phi d \theta
$$

$$
\begin{aligned}
& =2 \pi\left(\int_{0}^{1} \rho^{2} d \rho\right)\left(\int_{0}^{\pi / 4} \sin \phi d \phi\right) \\
& =2 \pi \cdot \frac{1}{3} \cdot[-\cos \phi]_{0}^{\pi / 4}=\frac{2 \pi}{3}\left(-\frac{1}{\sqrt{2}}+1\right) \\
& =\frac{2 \pi}{3}\left(1-\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

8. (10 pts) Find an equation of the plane through the point $(1,-1,-1)$ and parallel to the plane
$5 x-y-z=6$. Simplify to the form $a x+b y+c z+d=0$.

$$
\frac{\uparrow}{n}=\langle 5,-1,-1\rangle
$$

plane:

$$
\begin{aligned}
& \vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=\langle 5,-1,-1\rangle \cdot\langle x-1, y+1, z+1\rangle=0 \\
& \Leftrightarrow 5(x-1)-(y+1)-(z+1)=0 \\
& \Leftrightarrow 5 x-y-z-7=0
\end{aligned}
$$

9. \quad Suppose $\mathbf{F}=x \mathbf{i}+y^{2} \mathbf{j}+\left(z^{2}+x y\right) \mathbf{k}$.
(a) (5 pts) Compute and simplify the divergence $\nabla \cdot \mathbf{F}$.

$$
\nabla \cdot \vec{F}=1+2 y+2 z
$$

(b) (5pts) Compute and simplify the curl $\nabla \times \mathbf{F}$.

$$
\begin{aligned}
\nabla \times \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\partial x & \partial y & \partial z \\
x & y^{2} & z^{2}+x y
\end{array}\right|= & (x-0) \hat{\imath} \\
& (y-0) \hat{\jmath} \\
& +(0-0) \hat{k}
\end{aligned}
$$

10. (a) (5 pts) Sketch the plane curve C with the given vector equation, indicating its orientation.
(Label the axes and indicate scale on each axis. Sketch reasonably large!)

$$
\mathbf{r}(t)=4 \sin t \mathbf{i}+2 \cos t \mathbf{j}, \quad 0 \leq t \leq \frac{\pi}{2}
$$

(b) (5 pts) Compute the unit tangent vector field $\mathbf{T}(t)$ for the curve C in part (a).

11. (9 pts) Compute and simplify the linearization $L(x, y)$ of the function at the point:

$$
\begin{array}{r}
f(x, y)=\sqrt{\sqrt{2} / 1,} \\
f=(x, y)^{(1,4)} \Rightarrow f_{x}=\frac{1}{2}(x, y)^{-1 / 2} \cdot y=\frac{\sqrt{y}}{2 \sqrt{x}} \\
\\
f_{y}=\frac{1}{2}(x y)^{-1 / 2} \cdot x=\frac{\sqrt{x}}{2 \sqrt{y}}
\end{array}
$$

12. Suppose

$$
w=x y+y z+z x, \quad x=r \cos \theta, \quad y=r \sin \theta, \quad z=r \theta
$$

(a) (5 pts) State the chain rule for $\frac{\partial w}{\partial \theta}$ which applies in this case.

(b) (5 pts) Compute $\frac{\partial w}{\partial \theta}$ when $r=2$ and $\theta=\frac{\pi}{2}$. Simplify the answer to a number.

$$
x=0
$$

$$
\frac{\partial w}{\partial x}=y+z, \frac{\partial w}{\partial y}=x+z, \frac{\partial w}{\partial z}=y+x \left\lvert\, \begin{aligned}
& y=2 \\
& z=\pi
\end{aligned}\right.
$$

$$
\begin{aligned}
\therefore \frac{\partial w}{\partial \theta} & =(y+z) \cdot(-r \sin \theta)+(x+z) \cdot(r \cos \theta)+(y+x) \cdot r \\
& =(2+\pi) \cdot(-2 \cdot 1)+(0+\pi) \cdot(2 \cdot 0)+(0+2) \cdot 2 \\
& =-4-2 \pi+4--2 \pi
\end{aligned}
$$

Extra Credit I. (2 pts) Stokes' theorem says that $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{N} d S=\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ for any surface S in 3D with oriented boundary C. Explain, in sentences and equations, using correct notation, the situation in which this theorem becomes Green's theorem. (A sketch may help, too.)
Suppose S is a surface in the x, y plane. Then $\vec{N}=\hat{k}$ is a normal direction,
and $\nabla \times \vec{F}=\left\langle Q_{z}-R_{y}, R_{x}-P_{z}, Q_{x}-P_{y}\right\rangle$,

So $(\nabla \times \vec{F}) \cdot \hat{k}=a_{x}-P_{y}$. So

$$
\iint_{S}(\nabla \times \vec{F}) \cdot \vec{N} d S=\iint_{S} Q_{x}-P_{y} d A=\oint_{c} \vec{F} \cdot d \vec{r}_{S} \text { Green's } \begin{gathered}
\text { Themes. }
\end{gathered}
$$

13. (a) (5 pts) Find all critical points of the function:

$$
\begin{aligned}
& f(x, y)=2-x^{4}+2 x^{2}-y^{2} \\
& \nabla f=\left\langle-4 x^{3}+4 x,-2 y\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& (0,0) \\
& (+1,0) \\
& (-1,0)
\end{aligned}
$$

$$
\left.\begin{array}{c}
\rightarrow-4 x^{3}+4 x=0 \\
-2 y=0
\end{array}\right] \quad x\left(-x^{2}+1\right)=0
$$

(b) (5 pts) Find all local maxima, local minima, and saddle points of the function in part (a).

$$
D=f_{x x} f_{y y}-f_{x y}{ }^{2}=\left(-12 x^{2}+4\right)(-2)-0
$$

$$
=8\left(3 x^{2}-1\right)
$$

Assume $\overrightarrow{\mathbf{F}}(x, y)$ is a conservative vector field defined on a open, connected
Extra Credit II. (2 pts) region D. Fix any point (a, b) in D. Explain why the formula $f(x, y)=\int_{(a, b)}^{(x, y)} \mathbf{F} \cdot \underset{a}{ }$ defines a function on D.
Since \vec{F} is conservative, $\vec{F}=\nabla f$ for some $f(x, y)$. Therefor

