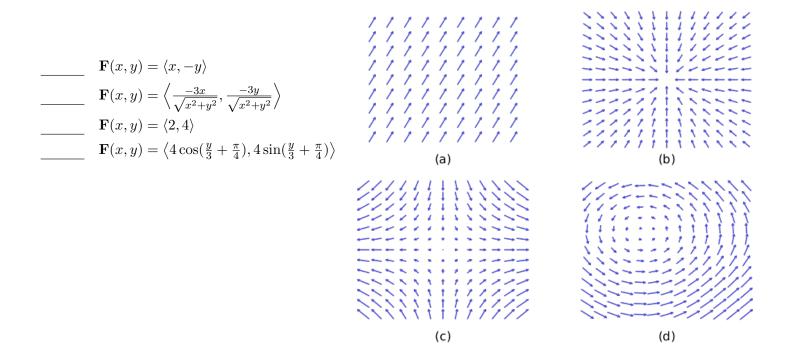
Math 253 Calculus III (Bueler) Wednesday, 3 May 2023

Final Exam

No book, electronics, calculator, or internet access. $\frac{1}{2}$ sheet of notes allowed; double-sided okay! 125 points possible. 120 minutes maximum.

1. (8 pts) Match the vector fields **F** with the plots. Write labels (a) through (d) in the spaces.



2. (10 pts) Determine whether **F** is a conservative vector field. If it is, find f so that $\mathbf{F} = \nabla f$.

$$\mathbf{F}(x,y) = (ye^x + \sin y)\mathbf{i} + (e^x + x\cos y)\mathbf{j}$$

3. $(10 \ pts)$ Suppose $\mathbf{F}(x,y) = \langle x^2 + y, 3x - y^2 \rangle$. Calculate $\oint_C \mathbf{F} \cdot d\mathbf{r}$ for any positively-oriented, closed, simple curve C enclosing a region D which has area 6. (*Hint*. Green's Theorem)

4. $(10 \ pts)$ Evaluate the line integral if C is the line segment from (0,0) to (5,4):

$$\int_C xe^y \, ds =$$

- 5. Consider the closed surface S which is formed by the equations $x^2 + y^2 = 4$, z = 0, and z = 1.
- (a) (4 pts) Sketch the surface S. (Remember to label the axes and indicate scale on each axis. Sketch reasonably large!)

(b) (6 pts) Now suppose $\mathbf{F} = \langle x, y, z^2 - 1 \rangle$ is a vector field. Use the **divergence theorem** to compute $\iint_S \mathbf{F} \cdot \mathbf{N} \, dS =$

6. $(8 \ pts)$ Find a unit vector that is orthogonal to both $\mathbf{i} + \mathbf{j}$ and $\mathbf{i} + \mathbf{k}$.

7. (a) (4 pts) Sketch the solid which is above the cone $z = \sqrt{x^2 + y^2}$ and inside the sphere $x^2 + y^2 + z^2 = 1$. (Label the axes and indicate scale on each axis. Sketch reasonably large!)

(b) (6 pts) Use spherical coordinates to find the volume of the solid in part (a).

8. $(10 \ pts)$ Find an equation of the plane through the point (1, -1, -1) and parallel to the plane 5x - y - z = 6. Simplify to the form ax + by + cz + d = 0.

- **9.** Suppose $\mathbf{F} = x\mathbf{i} + y^2\mathbf{j} + (z^2 + xy)\mathbf{k}$.
- (a) $(5 \ pts)$ Compute and simplify the divergence $\nabla \cdot \mathbf{F}$.

(b) (5 pts) Compute and simplify the curl $\nabla \times \mathbf{F}$.

10. (a) (5 pts) Sketch the plane curve C with the given vector equation, indicating its orientation. (Label the axes and indicate scale on each axis. Sketch reasonably large!)

$$\mathbf{r}(t) = 4\sin t \,\mathbf{i} + 2\cos t \,\mathbf{j}, \qquad 0 \le t \le \frac{\pi}{2}$$

(b) (5 pts) Compute the unit tangent vector field $\mathbf{T}(t)$ for the curve C in part (a).

11. (9 pts) Compute and simplify the linearization L(x,y) of the function at the point:

$$f(x,y) = \sqrt{xy}, \qquad (1,4)$$

12. Suppose

$$w = xy + yz + zx$$
, $x = r\cos\theta$, $y = r\sin\theta$, $z = r\theta$

(a) $(5 \ pts)$ State the chain rule for $\frac{\partial w}{\partial \theta}$ which applies in this case.

(b) (5 pts) Compute $\frac{\partial w}{\partial \theta}$ when r = 2 and $\theta = \frac{\pi}{2}$. Simplify the answer to a number.

Extra Credit I. (2 pts) Stokes' theorem says that $\iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{N} \, dS = \oint_C \mathbf{F} \cdot d\mathbf{r}$ for any surface S in 3D with oriented boundary C. Explain, in sentences and equations, using correct notation, the situation in which this theorem becomes Green's theorem. (A sketch may help, too.)

13. (a) (5 pts) Find all critical points of the function:

$$f(x,y) = 2 - x^4 + 2x^2 - y^2$$

(b) (5 pts) Find all local maxima, local minima, and saddle points of the function in part (a).

Extra Credit II. (2 pts) Assume $\mathbf{F}(x,y)$ is a conservative vector field defined on a open, connected region D. Fix any point (a,b) in D. Explain why the formula $f(x,y) = \int_{(a,b)}^{(x,y)} \mathbf{F} \cdot d\mathbf{r}$ defines a function on D.