Worksheet: Direction fields for differential equations

Abstract

A differential equation (DE) $$
y^{\prime}=f(x, y),
$$ says that the slope of the solution y^{\prime} is determined by the location (x, y). Thus we can visualize the DE itself by drawing a slope field or direction field. An initial value problem (IVP) is a DE plus a point in the plane. The solution to an IVP is plotted by putting a dot at the initial value and then sketching a curve, the solution, through that dot that follows the direction field.

A. The direction field for $y^{\prime}=x-y$ is shown below. Based on the direction field, sketch the solutions of the IVPs
(i) $y^{\prime}=x-y, \quad y(0)=0$
(ii) $y^{\prime}=x-y, \quad y(2)=6$

Also, I claim $y(x)=x-1+3 e^{-x}$ is a solution to the IVP

$$
y^{\prime}=x-y, \quad y(0)=2
$$

Verify this. It is shown on the direction field already.

B. The direction field for $y^{\prime}=1+y^{2}$ is shown below. Based on the direction field, sketch the solutions of the IVPs
(i) $y^{\prime}=1+y^{2}, \quad y(0)=2$
(ii) $y^{\prime}=1+y^{2}, \quad y(2)=0$

Also, I $\operatorname{claim} y(x)=\tan (x)$ is a solution to the IVP

$$
y^{\prime}=1+y^{2}, \quad y(0)=0
$$

Verify this. It is shown on the direction field already.

