base is $800 \mathrm{ft}^{2}$, the water is 4 ft deep, and
(Assume that the density of water is $62 \mathrm{lb} / \mathrm{ft}^{3}$.)

total work:

$$
\begin{aligned}
W & =\int_{0}^{4}(5-y) 62(800) d y \\
& =49600 \int_{0}^{4} 5-y d y \\
& =49600\left[5 y-\frac{y^{2}}{2}\right]_{0}^{4} \\
& =49600(20-8)=\begin{array}{l}
595,200 \\
4-l b
\end{array}
\end{aligned}
$$

B. (§2.6 \#279) Find the center of mass (\bar{x}, \bar{y}) of the region bounded by $y=x^{2}$ and $y=x^{4}$ in the
\qquad

assume $\rho=1$ if not stated (it cancels anyway!)

$$
\begin{array}{r}
m=\int_{0}^{1} x^{2}-x^{4} d x=\left[\frac{x^{3}}{3}-\frac{x^{5}}{5}\right]_{0}^{1}=\frac{1}{3}-\frac{1}{5} \\
=\frac{2}{15}
\end{array}
$$

$$
\begin{aligned}
M_{y} & =\int_{0}^{1} x\left(x^{2}-x^{4}\right) d x=\int_{0}^{1} x^{3}-x^{5} d x \\
& =\frac{1}{4}-\frac{1}{6}=\frac{1}{12}
\end{aligned}
$$

$$
\begin{aligned}
M_{x} & =\frac{1}{2} \int_{0}^{1}\left(x^{2}\right)^{2}-\left(x^{4}\right)^{2} d x=\frac{1}{2} \int_{0}^{1} x^{4}-x^{8} d x \\
& =\frac{1}{2}\left[\frac{x^{5}}{5}-\frac{x^{9}}{9}\right]_{0}^{1}=\frac{1}{2}\left(\frac{1}{5}-\frac{1}{9}\right)=\frac{2}{45} \\
\bar{x}=\frac{M_{y}}{m} & =\frac{1}{12} \frac{15}{2}=\frac{15}{24}, \bar{y}=\frac{m_{x}}{m}=\frac{2}{45} \frac{15}{2}=\frac{1}{3}
\end{aligned}
$$

