Worksheet: Calculating Taylor series

The Taylor series *of* f(x) *at basepoint a is*

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

= $f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \frac{f'''(a)}{3!} (x-a)^3 + \dots$

(When a = 0 one calls it a Maclaurin series, but who cares really?) The nth Taylor polynomial is the partial sum of the series:

$$p_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

A. Compute the Taylor series of $f(x) = e^{3x}$ at a = 0. What is the interval of convergence?

B. Find $p_2(x)$ for $f(x) = \arctan(x)$ at a = 0.

C. Compute the Taylor series of $f(x) = \sin x$ at $a = \pi$.

D. Compute the Taylor series of $f(x) = \frac{1}{1+x}$ at a = 0. What is the interval of convergence? Confirm using your knowledge of geometric series.