Worksheet: Calculating Taylor series

The Taylor series of $f(x)$ at basepoint a is

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots
\end{aligned}
$$

(When $a=0$ one calls it a Maclaurin series, but who cares really?) The nth Taylor polynomial is the partial sum of the series:

$$
p_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

A. Compute the Taylor series of $f(x)=e^{3 x}$ at $a=0$. What is the interval of convergence?
B. Find $p_{2}(x)$ for $f(x)=\arctan (x)$ at $a=0$.
C. Compute the Taylor series of $f(x)=\sin x$ at $a=\pi$.
D. Compute the Taylor series of $f(x)=\frac{1}{1+x}$ at $a=0$. What is the interval of convergence? Confirm using your knowledge of geometric series.

