Worksheet: Does the series converge or diverge?

For each of the following 13 infinite series, state whether it converges or diverges. Justify your statement using the following tests (or known series):

- geometric series
- telescoping series
- p-series
- divergence test
- integral test
- comparison test
- limit comparison test

In many cases multiple tests can determine convergence or divergence.
A. $\sum_{n=1}^{\infty} \frac{1}{n^{n}}$ Converges compare to $\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(\right.$ geometric, $\left.r=\frac{1}{2}<1\right)$
$\frac{1}{n 2^{n}} \leq \frac{1}{2^{n}} \quad$ or limit compare
B. $\sum_{n=1}^{\infty} 2^{n}$ diverge divergence test: $\lim _{n \rightarrow \infty} 2^{n}=+\infty \neq 0$
or geometric with $r=2>1$ Fest (bund)
D. $\quad \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3}}$ Converges which is geometric with $r=2 / 3<1:$
$\lim _{n \rightarrow \infty} \frac{n / 2^{n}}{(2 / 3)^{n}}=\lim _{n \rightarrow \infty} \frac{n}{(4 / 3)^{n}}=\lim _{n \rightarrow \infty} \frac{1}{(433)^{n} \cdot \ln (4 / 3)}=0$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n / 2^{n}}{(2 / 3)^{n}}=\lim _{n \rightarrow \infty} \frac{n}{(4 / 3)^{n}}=\lim _{n \rightarrow \infty} \frac{1}{(4 / 3)^{n} \ln (4 / 3)}=0 \\
& \text { integral test: } \int_{2}^{\infty} \frac{d x}{x(\ln x)^{3}}=\lim _{t \rightarrow \infty} \int_{\ln t} \frac{d u}{u^{3}}[u=[\ln x]
\end{aligned}
$$

$$
=\lim _{t \rightarrow \infty}\left[\frac{u^{-2}}{-2}\right]_{\ln 2}^{\ln t}=\lim _{t \rightarrow \infty} \frac{1}{2}\left((\ln 2)^{-2}-(\ln t)^{-2}\right)=\frac{1}{2(\ln 2)^{2}}
$$

E. $\sum_{n=1}^{\infty} \frac{n-4}{n^{3}+2 n}$ Converges limit compar to $\sum_{n=1}^{\infty} \frac{1}{n^{2}}(p=2$ sene):

$$
\lim _{n \rightarrow \infty} \frac{\frac{n-4}{n^{3}+2 n}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{3}-4 n}{n^{3}+2 n}=1
$$

F. $\sum_{n=2}^{\infty} \frac{1+\cos (n)}{e^{n}}$ Converging) cangue to $\sum_{n=2}^{\infty} \frac{2}{e^{n}}$ be cave $1+\cos (n) \leqslant 2$

$\begin{aligned} & \text { or internal } \\ & \text { test }\end{aligned} \lim _{n \rightarrow \infty} \frac{\sqrt[n]{n^{3}-1}}{\frac{n^{2} / \sqrt{n^{3}}}{}}=\cdots=1$
H. $\sum_{n=1}^{\infty} \frac{n^{3}}{\left(n^{4}-3\right)^{2}}$ converge limit compme to $\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ which converge
or integme $\lim _{n \rightarrow \infty} \frac{n^{3} /\left(n^{4}-3\right)^{2}}{1 / n^{5}}=\lim _{n \rightarrow \infty} \frac{n^{8}}{\left(n^{4}-3\right)^{2}}=1$ $(p=5$ series)
J. $\sum_{n=2}^{\infty} \frac{|\sin (n)|}{n}$ Unknown to me!
к. $\begin{array}{r}\sum_{n=2}^{\infty} \frac{1}{n!} \text { Converges compme to (for example) } \sum_{n=2}^{\infty} \frac{1}{n^{2}} \\ n!>n^{2} \text { starting with } n=4\end{array}$ semis
L. $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ dicyes integral test: $\int_{1}^{\infty} \frac{x d x}{x^{2}+1}=\lim _{t \rightarrow \infty} \frac{1}{2} \int_{2}^{t^{2}+1} \frac{d u}{u}$
or limit companion
M. $\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$ Converges
or integral
or telescoping
geometric:

$$
(-1)^{n} 3^{-n / 3}=\left(\frac{-1}{\sqrt[3]{3}}\right)^{n} \text { so }(r)=\frac{1}{\sqrt{3}}<1
$$

$$
=\frac{1}{2} \lim _{t \rightarrow \infty} \ln \left(t^{2}+1\right)-\ln 2=+\infty
$$

$$
\left[u=x^{2}+1\right]
$$

