Name: \qquad
\square
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [9 points] Do the series converge absolutely, conditionally, or neither (diverge)? Show your work and circle one answer.
a. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n-2}{\sqrt{n}}$
b. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$
c. $\sum_{n=1}^{\infty} \frac{\cos (\pi n)}{\sqrt{n}}$
2. [6 points] Use the ratio or root test to determine whether the series converges or diverges. Show your work.
a. $\sum_{k=1}^{\infty} \frac{k^{3}}{3^{k}}$
b. $\sum_{n=1}^{\infty} \frac{(n+2)^{2}}{n!}$
3. [3 points] How close is the partial sum $S_{10}=\sum_{n=1}^{10} \frac{(-1)^{n}}{2 n+1}$ to the convergent infinite sum (series) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n+1}$? That is, how large is the remainder R_{10} ? Give a brief explanation, and then answer quantitatively in the box, using the fact that the series is alternating.
4. [4 points] Find the radius and interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(2 x)^{n}}{n}$. Show your work.

5. [3 points] Use the geometric series $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$ to find a power series for the function $f(x)=\frac{x^{2}}{1+x^{2}}$.

Extra Credit. [2 points] Explain why $\sum_{n=1}^{\infty}(-1)^{n} \sin \left(\frac{1}{n}\right)$ converges conditionally.

