Name: \qquad / 25
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [5 points] Suppose $a_{n}=\frac{1}{n}$.
a. Find the limit of the sequence a_{n}.

b. Compute and simplify the first four partial sums S_{1}, \ldots, S_{4}.

$$
\begin{aligned}
& S_{1}=1 \\
& S_{2}=1+\frac{1}{2}=\frac{3}{2} \\
& S_{3}=1+\frac{1}{2}+\frac{1}{3}=\frac{3}{2}+\frac{1}{3}=\frac{11}{6} \\
& S_{4}=\frac{11}{6}+\frac{1}{4}=\frac{22+3}{12}=\frac{25}{12}
\end{aligned}
$$

2. [3 points] Find a function $f(n)$ for the nth term a_{n} of the following recursively defined sequence:

$$
a_{1}=3 \text { and } a_{n+1}=2 a_{n} \text { for } n \geq 1
$$

$$
\begin{aligned}
& a_{1}=3 \\
& a_{2}=3 \cdot 2 \\
& a_{3}=3 \cdot 2^{2} \\
& \vdots
\end{aligned}
$$

3. [3 points] Either show that the sequence diverges or, if it converges, find its limit: $\quad a_{n}=\frac{\ln (2 n)}{\ln \left(n^{2}\right)}$

$$
\lim _{n \rightarrow \infty} \frac{\ln (2 n)}{\ln \left(n^{2}\right)}=\lim _{n \rightarrow \infty} \frac{\ln 2+\ln n}{2 \ln n} \frac{\sum_{\infty}^{\infty}}{\infty_{\infty}} \lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{2}{n}}
$$

$$
=\lim _{n \rightarrow \infty} \frac{1}{2}=\frac{1}{2} \quad \text { (converge) }
$$

4. [6 points] State whether the given series converges or diverges, and explain why. If the series converges, find its sum. (Hint. Geometric series.)
a. $1+e+e^{2}+e^{3}+\ldots$ A geometric with $r=e>1$
b. $1-\frac{1}{10}+\frac{1}{100}-\frac{1}{1000}+\frac{1}{10000}-\ldots=$

geometric with $r=\frac{-1}{10}$
so $|r|<1$,
So can verge
5. [8 points] Consider the series

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}
$$

a. Use partial fractions and "telescoping" to write a simplified formula for the partial sum $S_{k}=\sum_{n=1}^{k} \frac{1}{n(n+1)}$.

$A=1$

$$
B=-1
$$

b. Compute the value of the series.
so

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n(n+1)} & =\lim _{k \rightarrow \infty} S_{k}= \\
& =1-0=1
\end{aligned}
$$

Extra Credit. [2 points] The black thing below, called the Sierpinksi gasket, is built by removing all of the white part from an original fully-black square. Assume the original square has side-length one and thus area one. Remove the middle 1/9th of the area. The remainder is 8 smaller black squares. For each of these, remove the middle 1/9th. Continuing in this way, by infinitely-many stages you remove all the white area. Using geometric series, compute the white area you removed. What area is left, the black area?

So

BLANK SPACE

