Name: _

17 March,	2022
-----------	------

_ /	25
_ /	25

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

- **1. [5 points]** Suppose $a_n = \frac{1}{n}$.
 - **a**. Find the limit of the sequence a_n .

b. Compute and simplify the first four partial sums S_1, \ldots, S_4 .

2. [3 points] Find a function f(n) for the *n*th term a_n of the following recursively defined sequence:

 $a_1 = 3$ and $a_{n+1} = 2a_n$ for $n \ge 1$.

3. [3 points] Either show that the sequence diverges or, if it converges, find its limit: $a_n = \frac{\ln(2n)}{\ln(n^2)}$

4. [6 points] State whether the given series converges or diverges, and explain why. If the series converges, find its sum. (**Hint.** Geometric series.)

a. $1 + e + e^2 + e^3 + \dots$

b. $1 - \frac{1}{10} + \frac{1}{100} - \frac{1}{1000} + \frac{1}{10000} - \dots$

5. [8 points] Consider the series

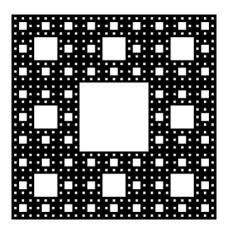
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}.$$

a. Use partial fractions and "telescoping" to write a simplified formula for the partial sum $S_k = \sum_{n=1}^{k} \frac{1}{n(n+1)}$.

b. Compute the value of the series.

Math 252: Quiz 7

Extra Credit. [2 points] The black thing below, called the **Sierpinksi gasket**, is built by removing all of the white part from an original fully-black square. Assume the original square has side-length one and thus area one. Remove the middle 1/9th of the area. The remainder is 8 smaller black squares. For each of these, remove the middle 1/9th. Continuing in this way, by infinitely-many stages you remove all the white area. Using geometric series, compute the white area you removed. What area is left, the black area?



BLANK SPACE