\qquad SOLUTIONS

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [9 points] Compute and simplify the improper integrals, or show the integral diverges. Use correct limit notation.

$$
(u=x-2)
$$

$$
\begin{aligned}
& \int_{4}^{\infty} \frac{d x}{\sqrt[3]{x-2}}=\lim _{t \rightarrow \infty} \int_{4}^{t}(x-2)^{-1 / 3} d x \xlongequal{t} \lim _{t \rightarrow \infty} \int_{2}^{t-2} u^{-1 / 3} d u \\
& =\lim _{t \rightarrow \infty}\left[\frac{3}{2} u^{2 / 3}\right]_{2}^{t-2}=\lim _{t \rightarrow \infty} \frac{3}{2}\left((t-2)^{2 / 3}-2^{2 / 3}\right) \\
& =+\infty \quad \text { diverges }
\end{aligned}
$$

$$
\text { b. } \begin{aligned}
& \int_{0}^{1} \frac{1 x}{\sqrt[3]{x}}=\lim _{t \rightarrow 0^{+}} \int_{t}^{1} x^{-1 / 3} d x=\lim _{t \rightarrow 0^{+}}\left[\frac{3}{2} x^{2 / 3}\right]_{t}^{1} \\
& =\frac{3}{2}\left(1-\lim _{t \rightarrow 0^{+}} t^{2 / 3}\right)=\frac{3}{2}(1-0)=\frac{3}{2}
\end{aligned}
$$

$$
\int_{-\infty}^{\text {c. }} \int_{-\infty}^{\infty} \cos (x) d x=\int_{-\infty}^{0} \cos (x) d x+\int_{0}^{\infty} \cos (x) d x
$$

$$
\int_{0}^{\infty} \cos x d x=\lim _{t \rightarrow \infty} \int_{0}^{t} \cos (x) d x
$$

$$
=\lim _{t \rightarrow \infty}[\sin (x)]_{0}^{t}=\lim _{t \rightarrow \infty} \sin t \text { d.n.e. }
$$

\therefore integral diverges

Math 252: Quiz 6
3 March, 2022
2. [3 points] Find the general solution to the differential equation $y^{\prime}=x^{3}$.

3. [5 points] Verify that $y=\frac{2}{\sqrt{1-8 x}}$ solves the differential equation $y^{\prime}=y^{3}$. $y=2(1-8 x)^{-1 / 2}$
$y^{\prime}=2\left(-\frac{1}{2}\right)(1-8 x)^{-3 / 2}(-8)=$

$y^{3}=\left(\frac{2}{(1-8 x)^{1 / 2}}\right)^{3}=\frac{8}{(1-8 x)^{3 / 2}}$

4. [3 points] Find the particular solution to the differential equation $y^{\prime}=3 x^{2} y$ that passes through $(0,12)$, given that $y=C e^{\left(x^{3}\right)}$ is the general solution.

5. [5 points] Suppose the region underneath $y=\sqrt{x} e^{-x / 2}$, on the interval $[0, \infty)$, is rotated around the x-axis. Find the volume of the enclosed solid. (Hint. Use correct and appropriate limit notation on the improper integral. Discs!)

Extra Credit. [2 points] Consider any smooth curve $y=f(x)$ on the interval $[0, \infty)$. An improper integral computes the total length L of this curve. By comparing this integral to another improper integral, one which you show is divergent, explain why $L=+\infty$.

So length
integral
diverges

BLANK SPACE

