Name: \qquad
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [9 points] Compute and simplify the improper integrals, or show the integral diverges. Use correct limit notation.
a.

$$
\int_{4}^{\infty} \frac{d x}{\sqrt[3]{x-2}}=
$$

b.

$$
\int_{0}^{1} \frac{d x}{\sqrt[3]{x}}=
$$

c.

$$
\int_{-\infty}^{\infty} \cos (x) d x=
$$

2. [3 points] Find the general solution to the differential equation $y^{\prime}=x^{3}$.
3. [5 points] Verify that $y=\frac{2}{\sqrt{1-8 x}}$ solves the differential equation $y^{\prime}=y^{3}$.
4. [3 points] Find the particular solution to the differential equation $y^{\prime}=3 x^{2} y$ that passes through $(0,12)$, given that $y=C e^{\left(x^{3}\right)}$ is the general solution.
5. [5 points] Suppose the region underneath $y=\sqrt{x} e^{-x / 2}$, on the interval $[0, \infty)$, is rotated around the x-axis. Find the volume of the enclosed solid. (Hint. Use correct and appropriate limit notation on the improper integral. Discs!)

Extra Credit. [2 points] Consider any smooth curve $y=f(x)$ on the interval $[0, \infty)$. An improper integral computes the total length L of this curve. By comparing this integral to another improper integral, one which you show is divergent, explain why $L=+\infty$.

