${ }^{2 m a n}$ 30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use prop
notation for full credit. Answers should be in reasonably-simplified form. 25 points possible $\left[7\right.$ points] Find the area of the region enclosed by the curves $x=2-y^{2}$ and $x=|y|$. (Hint: Sketch
the region first. Which variable to use for integration?)

$$
\begin{aligned}
A & =2 \int_{0}^{1}\left(2-y^{2}\right)-y d y \\
& =2\left[2 y-\frac{y^{3}}{3}-\frac{y^{2}}{2}\right]_{0}^{1} \\
& =2\left[2-\frac{1}{3}-\frac{1}{2}\right]=2 \cdot \frac{7}{6}=\frac{7}{3}
\end{aligned}
$$

2. [13 points]

a. Sketch the region bounded by $y=x^{2}, x=0$, and $y=1$.

b. Find the volume of the solid formed by revolving the region in part a. around the x-axis. (Hint: Use discs or washers.)

c. Find the volume of the solid formed by revolving the region in part a. around the y-axis. (Hint: Use discs or washers.)

3. [5 points] Set up, but do not evaluate, an integral for the area between $y=\cos (x)$ and $y=\cos (x)^{2}$ on the interval $0 \leq x \leq \pi / 2$. (Hint: Sketch the region first. Which function has larger values?)
$0<\cos (x)<1$ on $\left(0, \frac{\pi}{2}\right)$
So: $\cos (x)^{2}<\cos (x)$

[we will make this uffkial in Chapter 3] trig, identity: $\quad \cos (x)^{2}=\frac{1+\cos (2 x)}{2}$

$$
\begin{aligned}
\therefore A & =\int_{0}^{\pi / 2} \cos (x)-\frac{1}{2}(1+\cos (2 x)) d x \\
= & {\left[\sin (x)-\frac{1}{2} x-\frac{1}{4} \sin (2 x)\right]_{0}^{\pi / 2} } \\
& =1-\frac{\pi}{4}-0=1-\frac{\pi}{4}
\end{aligned}
$$

