\qquad

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [4 points] Determine the slope and equation of the tangent line at the given value of the parameter:

$$
\begin{gathered}
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2^{x=2 t-1,} \quad t=-1}{3 t^{2}} \quad \therefore m=\left.\frac{d y}{d x}\right|_{t-1}=\frac{2}{3} \\
\left.@ t=-1: \begin{array}{l}
x=-1 \\
y=-3
\end{array}\right\} \rightarrow \begin{array}{c}
y-y_{0}=m\left(x-x_{0}\right) \\
(\text { slope })= \\
2 / 3 \\
\text { equation: } \\
y+3=\frac{2}{3}(x+1)
\end{array}
\end{gathered}
$$

2. [4 points] Find $\frac{d^{2} y}{d x^{2}}$:

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{\frac{d}{d t}\left(\frac{d y / d t}{d x d t}\right)}{d x / d t}=\frac{\frac{d}{d t}\left(\frac{1+e^{t}-t,}{2 t-1}\right)}{2 t-1} \\
& =\frac{e^{t}(2 t-1)-\left(1+e^{t}\right)-2}{(2 t-1)^{3}}
\end{aligned}
$$

other forms

$$
\left.=\left(\frac{(2 t-3) e^{t}-2}{(2 t-1)^{3}}\right)\right\}
$$ are ok. if they are correct

3. [6 points] Consider the parametric curve

$$
x=\sin ^{2} t, \quad y=\cos ^{2} t, \quad 0 \leq t \leq \pi / 2
$$

a. Use an integral to find the arc length of the curve.

$$
\begin{aligned}
& L=\int_{0}^{\pi / 2} \sqrt{\left.(2 \sin t \cos t)^{2}+(2 \cos t-\sin t)\right)^{2}} d t \\
& =2 \sqrt{2} \int_{0}^{\pi / 2} \sqrt{\sin ^{2} t \cos ^{2} t} d t=2 \sqrt{2} \int_{0}^{\pi / 2} \sin t \cos t d t \\
& \begin{array}{l}
=2 \sqrt{2} \int_{u}^{1} u d u=2 \sqrt{2} . \\
=1
\end{array} \\
& \text { b. Eliminate the parameter to find an equation of a line segment. }
\end{aligned}
$$

4. [3 points] Find the rectangular (cartesian) coordinates of $(r, \theta)=\left(2, \frac{\pi}{6}\right)$

$$
\begin{aligned}
& x=2 \cos (\pi / 6)=2 \cdot \frac{\sqrt{3}}{2}=\sqrt{3} \\
& y=2 \sin (\pi / 6)=2 \cdot \frac{1}{2}=1
\end{aligned}
$$

5. [4 points] Rewrite and simplify the polar curve $r=2 \cos \theta$ in rectangular (cartesian) coordinates.

$$
r=2 \cos \theta
$$

$x=r \cos \theta$ $y=r \sin \theta$
$r^{2}=2 r \cos \theta$

$$
x^{2}+y^{2}=2 x
$$

also it is a circle:

6. [4 points] Sketch the graph of $r=5 \cos (2 \theta)$ for $0 \leq \theta \leq \frac{\pi}{2}$. Please make a large, careful sketch!

Extra Credit. [2 points]

