Name: \qquad
_/ 25

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [4 points] Determine the slope and equation of the tangent line at the given value of the parameter:

$$
x=t^{3}, \quad y=2 t-1, \quad t=-1
$$

2. [4 points] Find $\frac{d^{2} y}{d x^{2}}$:

$$
x=t^{2}-t, \quad y=t+e^{t}
$$

3. [6 points] Consider the parameteric curve

$$
x=\sin ^{2} t, \quad y=\cos ^{2} t, \quad 0 \leq t \leq \pi / 2
$$

a. Use an integral to find the arc length of the curve.
b. Eliminate the parameter to find an equation of a line segment.
c. Use the answer in b. to compute the arc length without an integral.
4. [3 points] Find the rectangular (cartesian) coordinates of $(r, \theta)=\left(2, \frac{\pi}{6}\right)$

$$
(x, y)=\square
$$

5. [4 points] Rewrite and simplify the polar curve $r=2 \cos \theta$ in rectangular (cartesian) coordinates.
6. [4 points] Sketch the graph of $r=5 \cos (2 \theta)$ for $0 \leq \theta \leq \frac{\pi}{2}$. Please make a large, careful sketch!

Extra Credit. [2 points] Find the area between this parametric curve and the x-axis:

$$
x=\cos \left(t^{2}\right), \quad y=\sin \left(t^{2}\right), \quad-\sqrt{\pi} \leq t \leq \sqrt{\pi}
$$

(Hint. Blind integration is unwise.)

