Math 252: Quiz 10
SOLUTIONS
Name: \qquad / 25
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [8 points] Using any convenient method, write the Maclaurin series of the given function. Use sigma notation for your answer.
a. $g(x)=x e^{-2 x}$

b. $f(x)=\frac{\sin x}{x}$ $\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$

2. [4 points] Use the answer from problem $1 \mathbf{b}$ on the previous page to compute the integral:

$$
\int_{0}^{x} \frac{\sin t}{t} d t=
$$

now integrate

3. [4 points] Use the ratio (or root) test, plus a check on series convergence at the endpoints, to show that the interval of convergence of the following familiar Maclaurin series is $[-1,1]$.

$$
\begin{aligned}
& \arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \\
& \rho=\lim _{n \rightarrow \infty} \frac{\frac{|x|^{2 n+3}}{2 n+3}}{\frac{|x|^{2 n+1}}{2 n+1}}=\lim _{n \rightarrow \infty}|x|^{2} \frac{2 n+1}{2 n+3}
\end{aligned}
$$

4. [5 points] Use the binomial series for $(1+x)^{r}$ to write out the first four nonzero terms of
(Hint. This means you will write the Taylor polynomial of degree 6 for $f(x)$.)

$$
\left(1+x^{2}\right)^{1 / 3}=1+\frac{1}{3} x^{2}+\frac{1 / 3-2 / 3)}{2} x^{4}+\frac{\frac{1}{3}(-2 / 3)(-5 / 3)}{3!} x^{6}+\ldots
$$

$\stackrel{\uparrow}{\text { first four nonzero terms }}$
simplified form: \leftarrow not requical

$$
P_{6}(x)=1+\frac{1}{3} x^{2}-\frac{1}{9} x^{4}+\frac{5}{81} x^{6}
$$

5. [4 points] Consider the parametric curve $x=1+\cos t, y=3-\sin t$.
a. Eliminate the parameter to convert into rectangular form.

$$
x-1=\cos t, y-3=-\sin t: \quad(x-1)^{2}+(y-3)^{2}=1
$$

b. Sketch the curve in the x, y plane.

Finding the antiderivative

$$
\int \sqrt{x} e^{x} d x
$$

is traditionally regarded as impossible. Indeed it is impossible if you want a finite expression in terms of familiar functions, but fairly easy if you accept a series, one which is not quite a standard power series, for the answer. Starting from the familiar Maclaurin series for e^{x}, find a series form of this antiderivative.

BLANK SPACE

