Name: \qquad
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [8 points] Using any convenient method, write the Maclaurin series of the given function. Use sigma notation for your answer.
a. $g(x)=x e^{-2 x}$
b. $f(x)=\frac{\sin x}{x}$
2. [4 points] Use the answer from problem $1 \mathbf{b}$ on the previous page to compute the integral:

$$
\int_{0}^{x} \frac{\sin t}{t} d t=
$$

3. [4 points] Use the ratio (or root) test, plus a check on series convergence at the endpoints, to show that the interval of convergence of the following familiar Maclaurin series is $[-1,1]$.

$$
\arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

4. [5 points] Use the binomial series for $(1+x)^{r}$ to write out the first four nonzero terms of

$$
f(x)=\left(1+x^{2}\right)^{1 / 3}
$$

(Hint. This means you will write the Taylor polynomial of degree 6 for $f(x)$.)
5. [4 points] Consider the parametric curve $x=1+\cos t, y=3-\sin t$.
a. Eliminate the parameter to convert into rectangular form.
b. Sketch the curve in the x, y plane.

Extra Credit. [2 points] Finding the antiderivative

$$
\int \sqrt{x} e^{x} d x
$$

is traditionally regarded as impossible. Indeed it is impossible if you want a finite expression in terms of familiar functions, but fairly easy if you accept a series, one which is not quite a standard power series, for the answer. Starting from the familiar Maclaurin series for e^{x}, find a series form of this antiderivative.

