Math 252: Quiz 9
SOLUTIONS
Name: \qquad
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 24 points possible.

1. [8 points] Do the series converge absolutely, converge conditionally, or diverge? Show your work, identify tests you used, and circle one answer.

- $\sum_{=1=1}^{\cos (n)} n=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \quad b_{n}=\frac{1}{n}$ $\lim _{n \rightarrow \infty} \frac{1}{n}=0$, bn dec.

2. [8 points] Use the ratio or root test to determine whether the series converges or diverges. Show your work.
a. $\sum_{k=0}^{\infty} \frac{k^{2}}{2^{k}} \quad$ root test: $p=\lim _{k \rightarrow \infty} \sqrt[k]{\frac{k^{2}}{2^{k}}}=\lim _{k \rightarrow \infty} \frac{(\sqrt[k]{k})^{2}}{2}$
$\quad \therefore$ Conveying
[also ratio test:

$$
=\frac{1^{2}}{2}=\frac{1}{2}<1
$$

3. [8 points] Use any test to determine whether the series converges or diverges. Show your work.

$$
\text { a. } \begin{aligned}
& \sum_{n=1}^{\infty}(-1)^{n+1}(\sqrt{n+1}-\sqrt{n}) \\
& b_{n}= \frac{\sqrt{n+1}-\sqrt{n}}{1}=\frac{\sqrt{n+1}-\sqrt{n}}{1} \frac{\sqrt{n+1}+\sqrt{n}}{\sqrt{n+1}+\sqrt{n}} \\
&=\frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}}
\end{aligned}
$$

So $\lim _{n \rightarrow \infty} b_{n}=\frac{1}{\infty}=0$, bn decrevere
so convagea by A.S.T. ${ }_{T}$ attempting sentestst
turns out it converge conditivinelly, but tad wasn't

- inn thar root test

$$
\rho=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{1}{(1+\min)^{n}}}=\lim _{n=\infty} \frac{1}{1+\tan }=\frac{1}{\infty}=0<1
$$

so

EC. [1 points] (Extra Credit) How close is the partial sum $S_{9}=\sum_{n=2}^{9} \frac{(-1)^{n}}{\ln (n)}$ to the conditionally-convergent series $S=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$? State your reason, and write a specific upper bound on the remainder R_{9} in the box.

