Name: \qquad
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [9 points] Use either the comparison test or the limit comparison test to determine whether the series converge or diverge. Please show enough work to demonstrate how the test is applied.
a. $\sum_{n=1}^{\infty} \frac{1}{2 n+1} \quad$ (note $\frac{1}{2 n+1} \leq \frac{1}{2 n}$... wrongside for comparison) limit compare to $\sum_{n=1}^{\infty} \frac{1}{2 n}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n}$ which during (harmonic)

$$
\lim _{n \rightarrow \infty} \frac{1}{2 n+1} \frac{\lim _{n \rightarrow \infty}}{\frac{2 n}{2 n}} \frac{2 H}{2 n+1}=\lim _{n \rightarrow \infty} \frac{2}{2}=1 \neq 0, \infty
$$

so diverge
and

$$
n^{2}+\ln n \geqslant n^{2}
$$

so
$\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converge $(p=2)$
so conunges by comparison test
[limit comparison is possibles but hard to use]
c. $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{2^{n}}$
$\sin ^{2} n \leqslant 1$
So $\quad \frac{\sin ^{2} n}{2^{n}} \leqslant \frac{1}{2^{n}}$
and $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ is geometric, $r=\frac{1}{2}<1$,

by comparison hst
2. [4 points] Apply the integral test to show that $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges for $p>1$.

$$
=\lim _{t \rightarrow \infty}
$$

p>1 converges

3. [3 points] Sketch a partial sum S_{N} of the harmonic series, as the total area of rectangles of width one. (Please label axes appropriately.)

4. [9 points] Use an appropriate test to determine whether the series converge or diverge. Please state what test you are using, and show enough work to demonstrate how the test is applied.
a. $\sum_{n=2}^{\infty} \frac{(n-2)!}{n!} \quad \frac{(n-2)!}{n!}=\frac{(n-2)(n-3) \cdots 2 \cdot 1}{n(n-1)(n-2) \cdots 21}=\frac{1}{n(n-1)}$
limit compare to $\sum_{n=2}^{\infty} \frac{1}{n^{2}}: \lim _{n \rightarrow \infty} \frac{1}{n(n-1)} \frac{1}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n(n-1)}$
and $\sum^{\infty} \frac{L}{n^{2}}$ converge $(p=2) \quad \frac{2}{2}=1 \neq 0, \infty$
and $\sum_{n=1} \frac{1}{n^{2}}$ converges $(p=2)$, so con verges
[also can use telescoping or integral test on $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$]
b. $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$ integral fest:

$$
\begin{aligned}
& \frac{1}{n(\ln n)^{2}} \text { integinl fest: } \\
& \int_{2}^{\infty} \frac{d x}{x(\ln x)^{2}}=\lim _{t \rightarrow \infty} \int_{\ln 2}^{\ln t} \frac{d u}{u^{2}} \quad\left[\begin{array}{l}
u=\ln x \\
d u=\frac{1}{x} d x
\end{array}\right] \\
& =\lim _{t \rightarrow \infty}\left[-u^{-1]_{\ln 2} t}=\lim _{t \rightarrow \infty} \frac{1}{\ln 2}-\frac{1}{\ln t}=\frac{1}{\ln 2}-0\right. \\
& (\text { finite })
\end{aligned}
$$

so series Converts
c. $\sum_{n=1}^{\infty} \frac{n^{2}}{\sqrt{n^{3}+1}}$
divergence test: $\lim _{n \rightarrow \infty} \frac{n^{2}}{\sqrt{n^{3}+1}} \frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}}$

$$
=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{\frac{1}{n}+\frac{1}{n^{4}}}} \frac{n^{\prime \prime}}{=}+\infty
$$

so dwerges
Calso: integral test, limit compare to $\sum_{n=1}^{\infty} \frac{n^{2}}{\sqrt{n^{3}}}=\sum_{n=1}^{\infty} n^{1 / 2}$]

EC. [1 points] (Extra Credit) My computer says that the 100th partial sum of the series $S=\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is $S_{100}=1.2020074$. How accurate is this? Use an integral to estimate the size of the remainder $R_{100}=S-S_{100}$.

$$
R_{100} \leq \int_{100}^{\infty} \frac{d x}{x^{3}}=\lim _{t \rightarrow \infty}\left[\frac{-x^{-2}}{2}\right]_{100}^{t}
$$

$$
=\lim _{t \rightarrow \infty} \frac{(100)^{2}}{2}-\frac{t^{-2}}{2}=\frac{1}{2 \cdot(100)^{2}}=5 \times 10^{-5}
$$

$$
\text { So } S_{100}=\sum_{n=1}^{100} \frac{1}{n^{3}} \text { is within } 5 \times 10^{-5} \text { of } S=\sum_{n=1}^{\infty} \frac{1}{n^{3}}
$$

