Name: _

/ 25

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [9 points] Use either the **comparison test** or the **limit comparison test** to determine whether the series converge or diverge. Please show enough work to demonstrate how the test is applied.

$$a. \sum_{n=1}^{\infty} \frac{1}{2n+1}$$

b.
$$\sum_{n=2}^{\infty} \frac{1}{n^2 + \ln n}$$

$$c. \sum_{n=1}^{\infty} \frac{\sin^2 n}{2^n}$$

Math 252: Quiz 8

2. [4 points] Apply the integral test to show that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for p > 1.

3. [3 points] Sketch a partial sum S_N of the harmonic series, as the total area of rectangles of width one. (Please label axes appropriately.)

Math 252: Quiz 8

3 November, 2022

4. [9 points] Use an appropriate test to determine whether the series converge or diverge. Please state what test you are using, and show enough work to demonstrate how the test is applied.

$$a. \sum_{n=2}^{\infty} \frac{(n-2)!}{n!}$$

b.
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

$$c. \sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n^3+1}}$$

Math 252: Quiz 8

3 November, 2022

EC. [1 points] (Extra Credit) My computer says that the 100th partial sum of the series $S = \sum_{n=1}^{\infty} \frac{1}{n^3}$ is $S_{100} = 1.2020074$. How accurate is this? Use an integral to estimate the size of the remainder $R_{100} = S - S_{100}$.

BLANK SPACE