Name:
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [3 points] Find a formula for the nth term a_{n} of the following recursively defined sequence:

$$
\begin{aligned}
& a_{1}=1 \text { and } a_{n+1}=(n+1) a_{n} \text { for } n \geq 1 \\
& a_{2}=(1+1) a_{1}=2 a_{1}=2 \cdot 1 \\
& a_{3}=(2+1) a_{2}=3 \cdot 2 \cdot 1 \\
& a_{4}=(3+1) a_{3}=4 \cdot 3 \cdot 2 \cdot 1 \\
& \text { so } a_{n}=n!
\end{aligned}
$$

2. [4 points] Determine the limit of the sequence or explain why the sequence diverges:

$$
\lim _{n \rightarrow \infty} \frac{n+2}{a_{n}=\ln \left(\frac{n+2}{n^{2}-3}\right)} \underset{L^{\prime}+4}{\frac{\infty}{\infty}} \lim _{n \rightarrow \infty} \frac{1}{2 n}=0
$$

and $\frac{n+2}{n^{2}-3}$ are positive values for la ge n
So

$$
\lim _{n \rightarrow \infty}
$$

$\ln \left(\frac{n+}{n^{2}}\right.$

$$
\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty
$$

3. [4 points] Compute and simplify the fourth partial sum S_{4} of the series $\sum_{n=1}^{\infty} a_{n}$ which has nth term $a_{n}=\frac{1}{n}$.

$$
S_{4}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{12+6+4+3}{12}
$$

4. [4 points] Use sigma notation to write a simplified expression for the infinite series.

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots
$$

5. [10 points] State whether the given series converges or diverges, and explain why. If the series converges, find its sum.
a. $1+\frac{e}{\pi^{2}}+\frac{e^{2}}{\pi^{2}}+\frac{e^{3}}{\pi^{3}}+\ldots$ geometric with

EC. [1 points] (Extra Credit) Write the repeating decimal $x=2.787878 \cdots=2 . \overline{78}$ as a rational number. That is, find integers N and M so that $x=N / M$. Subtadat $\left\{\begin{aligned} x & =2.7878 \cdots \\ 100 x & =278.7878 \cdots\end{aligned}\right.$ $99 x=278-2=276$

BLANK SPACE

