Math 252: Quiz 7

SOLUTIONS

27 October, 2022

Name:

/ 25

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [3 points] Find a formula for the *n*th term a_n of the following recursively defined sequence:

$$a_1 = 1$$
 and $a_{n+1} = (n+1)a_n$ for $n \ge 1$

$$a_2 = (1+1)a_1 = 2a_1 = 2 \cdot 1$$

so
$$a_n = n!$$

2. [4 points] Determine the limit of the sequence or explain why the sequence diverges:

$$a_n = \ln\left(\frac{n+2}{n^2 - 3}\right)$$

are positive values for large n

So

 $\int \ln\left(\frac{n+2}{n^2-3}\right) = \lim_{x\to 0^+} \ln(x) = [-\infty]$ $\int \ln\left(\frac{n+2}{n^2-3}\right) = \lim_{x\to 0^+} \ln(x) = [-\infty]$

3. [4 points] Compute and simplify the fourth partial sum S_4 of the series $\sum_{n=1}^{\infty} a_n$ which has nth term $a_n = \frac{1}{n}$.

$$S_{4} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{12 + 6 + 4 + 3}{12}$$

$$= \left(\frac{25}{12}\right)$$

4. [4 points] Use sigma notation to write a simplified expression for the infinite series.

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$$

$$=\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}$$

$$=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{n+1}$$

$$=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{n+1}$$

$$=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{n+1}$$

$$=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{n+1}$$

$$=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{n+1}$$

Math 252: Quiz 7 27 October, 2022

5. [10 points] State whether the given series converges or diverges, and explain why. If the series converges, find its sum.

a.
$$1+\frac{e}{\pi}+\frac{e^2}{\pi^2}+\frac{e^3}{\pi^3}+\dots$$
 geometric with $a=1$, $r=\frac{e}{\pi}$. Since $|r|<1$, converges $s=\frac{e}{\pi}$.

$$S = \sum_{n=0}^{\infty} (\frac{e}{\pi})^n = \frac{1}{1-\frac{e}{\pi}} = \frac{\pi}{\pi}$$

$$S_{K} = \sum_{n=1}^{K} \frac{1}{n(n+1)} \quad \text{partial fractions:} \quad \frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1}$$

$$I = A(n+1) + Bn$$

$$I =$$

Con voyes

EC. [1 points] (Extra Credit) Write the repeating decimal $x = 2.787878 \cdots = 2.\overline{78}$ as a rational number. That is, find integers N and M so that x = N/M.

Subtract
$$X = 2.7878...$$
 $100x = 278.7878...$
 92
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 276
 27

BLANK SPACE