Name:

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [3 points] Find a formula for the nth term a_{n} of the following recursively defined sequence:

$$
a_{1}=1 \text { and } a_{n+1}=(n+1) a_{n} \text { for } n \geq 1
$$

2. [4 points] Determine the limit of the sequence or explain why the sequence diverges:

$$
a_{n}=\ln \left(\frac{n+2}{n^{2}-3}\right)
$$

Math 252: Quiz 7

3. [4 points] Compute and simplify the fourth partial sum S_{4} of the series $\sum_{n=1}^{\infty} a_{n}$ which has nth term $a_{n}=\frac{1}{n}$.
4. [4 points] Use sigma notation to write a simplified expression for the infinite series.

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots
$$

5. [10 points] State whether the given series converges or diverges, and explain why. If the series converges, find its sum.
a. $1+\frac{e}{\pi}+\frac{e^{2}}{\pi^{2}}+\frac{e^{3}}{\pi^{3}}+\ldots$
b. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

EC. [1 points] (Extra Credit) Write the repeating decimal $x=2.787878 \cdots=2 . \overline{78}$ as a rational number. That is, find integers N and M so that $x=N / M$.

