Name: $\qquad$
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [ 9 points] Compute and simplify the improper integrals, or show that they diverge. Use correct limit notation.

$$
\begin{aligned}
& \text { a. } \begin{aligned}
\int_{0}^{\infty} \frac{1}{4+x^{2}} d x & \left.=\lim _{t \rightarrow \infty} \frac{1}{2} \arctan \left(\frac{x}{2}\right)\right]_{0}^{t}=\lim _{t \rightarrow \infty} \frac{1}{2}\left(\arctan \left(\frac{t}{2}\right)\right. \\
& =\frac{1}{2} \cdot \frac{\pi}{2}=\left(\frac{\pi}{4}\right)
\end{aligned} \\
& {\left[\begin{array}{rl}
{\left[\frac{\text { or by trig. }}{} \text { subset. }: ~\right.} \\
\text { gives } \left.\quad \lim _{t \rightarrow \infty} \int_{0}^{\arctan (t / 2)} \frac{2 \sec ^{2} \theta d \theta}{4 \sec ^{2} \theta}=\cdots=\frac{\pi}{4}\right]
\end{array}\right.}
\end{aligned}
$$

D. $\int_{0}^{\sin x d x=} \lim _{t \rightarrow \infty} \int_{0}^{t} \sin x d x=\lim _{t \rightarrow \infty}[-\cos x]_{0}^{t}$ $=\lim _{t \rightarrow \infty} 1-\cos t$ d.n.e.

2. [4 points] Verify that $y=e^{x^{2} / 2}$ solves the differential equation $y^{\prime}=x y$.

$$
\begin{aligned}
y^{\prime} & \stackrel{?}{=} x y \\
e^{x^{2} / 2}(x) & =x e^{x^{2} / 2}
\end{aligned}
$$

3. [4 points] Find the general solution to the differential equation $y^{\prime}=\ln x+\tan x$.

$$
\begin{aligned}
& y(x)=\int \ln x d x+\int \tan x d x \\
&=x \ln x-\int x \cdot \frac{1}{x} d x+\int \frac{-d u}{u}[u=\cos x \\
&-d u=\sin x d x] \\
&\uparrow \operatorname{lb} y \operatorname{pan} \mid=u=\ln x, d v=d x] \\
&=x \ln x-x-\ln |\cos x|+c \\
&=x \ln x-x+\ln |\sec x|+c
\end{aligned}
$$

4. [4 points] Find the particular solution of the differential equation $y^{\prime}=\frac{y}{x^{2}}$ that passes through $\left(1, \frac{2}{e}\right)$, given that $y=C e^{-1 / x}$ is the general solution.

$$
y=c e^{-v x} \quad \text { at } x=1, y=\frac{2}{e}
$$

$$
\frac{2}{e}=c e^{-1 / 1}=c e^{-1}=\frac{c}{e}
$$

$$
2=c
$$


5. [4 points] Find the area of the region in the first quadrant between the curve $y=e^{-3 x}$ and the $x$-axis.

$$
\begin{aligned}
A & =\int_{0}^{\infty} e^{-3 x} d x=\lim _{t \rightarrow \infty} \int_{0}^{t} e^{-3 x} d x \\
& =\lim _{t \rightarrow \infty}\left[\frac{e^{-3 x}}{-3}\right]_{0}^{t}=\frac{1}{3} \lim _{t \rightarrow \infty}\left(1-e^{-3 t}\right) \\
& =\frac{1}{3}(1-0)=\frac{1}{3}
\end{aligned}
$$

EC. [1 points] (Extra Credit) Suppose the curve $y=e^{-x}$, on the interval $[0,+\infty)$, is rotated around the $x$-axis. Set up an integral for the surface area and give a convincing argument that this integral is finite.

$$
\begin{aligned}
A & =\int_{0}^{\infty} 2 \pi e^{-x} \sqrt{1+\left(-e^{-x}\right)^{2}} d x \\
& =2 \pi \int_{0}^{\infty} e^{-x} \sqrt{1+e^{-2 x}} d x
\end{aligned}
$$

quick way to
show finite:

$$
\begin{aligned}
& e^{-2 x} \leq 1 \text { on }[0, \infty) \\
& 1+e^{-2 x} \leq 2 \\
& \sqrt{1+e^{-2 x}} \leq \sqrt{2}
\end{aligned}
$$

So

$$
A \leqslant \int_{0}^{\infty} 2 \pi e^{-x} \sqrt{1+e^{-2 x} \leq \sqrt{2}} d x=2 \sqrt{2} \pi \int_{0}^{\infty} e^{-x} d x=2 \sqrt{2 \pi}
$$

Slow way: $\left[u=e^{-x}\right]_{\text {gives }}^{\substack{\text { blank sere }}} A=\lim _{t \rightarrow \infty}-\int_{1}^{e^{-t}} 2 \pi \sqrt{1+u^{2}} d u$
then $[u=\tan \theta]$ gives $A=\lim _{t \rightarrow \infty} 2 \pi \int_{\arctan \left(e^{-t}\right)}^{\pi / 4} \sec \theta \sec ^{2} \theta d \theta$

$$
=2 \pi \int_{0}^{\pi / 4} \sec ^{3} \theta d \theta=\underset{\text { gory mess }}{\ldots}
$$

