Name:

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [9 points] Compute and simplify the improper integrals, or show that they diverge. Use correct limit notation.
a. $\int_{0}^{\infty} \frac{1}{4+x^{2}} d x=$
b. $\int_{0}^{\infty} \sin x d x=$
c. $\int_{0}^{1} \frac{1}{\sqrt[4]{x}} d x=$
2. [4 points] Verify that $y=e^{x^{2} / 2}$ solves the differential equation $y^{\prime}=x y$.
3. [4 points] Find the general solution to the differential equation $y^{\prime}=\ln x+\tan x$.
4. [4 points] Find the particular solution of the differential equation $y^{\prime}=\frac{y}{x^{2}}$ that passes through $\left(1, \frac{2}{e}\right)$, given that $y=C e^{-1 / x}$ is the general solution.
5. [4 points] Find the area of the region in the first quadrant between the curve $y=e^{-3 x}$ and the x-axis.

EC. [1 points] (Extra Credit) Suppose the curve $y=e^{-x}$, on the interval $[0,+\infty$), is rotated around the x-axis. Set up an integral for the surface area and give a convincing argument that this integral is finite.

