\qquad
\square 125
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [10 points] Find the work required to pump all the water out of a cylinder which has a circular base of radius 4 meters and height 10 meters. Use the fact that water has a mass density of 1000 $\mathrm{kg} / \mathrm{m}^{3}$, and use $g=10 \mathrm{~m} / \mathrm{s}^{2}$ as an approximation of the acceleration of gravity. (Hint: Start by drawing a decent sketch and considering a slice of water; a good sketch is worth 2 points. Simplify your answer and give units.)
for a slice:

$$
\begin{aligned}
d V & =\pi \cdot 4^{2} \cdot d y \\
& =16 \pi d y\left[\mathrm{~m}^{3}\right] \\
d m & =16 \pi \rho d y \quad[\mathrm{~kg}] \\
d W & =(\text { force }) \cdot(\text { distance }) \\
& =\underbrace{16 \pi \rho d y g}_{F=m g} \cdot(10-y)
\end{aligned}
$$

So

$$
\begin{aligned}
W & =\int_{0}^{10} 16 \pi \rho g d y(10-y) \\
& =16 \pi \cdot 1000 \cdot 10 \int_{0}^{10} 10-y d y \\
& =16 \pi 10^{4}\left[10 y-\frac{y^{2}}{2}\right]_{0}^{10} \quad\left[J=N_{m}\right] \\
& =16 \pi 10^{4}\left(100-\frac{100}{2}\right)=16 \cdot 50 \cdot \pi \cdot 10^{4} \quad \\
& =8 \pi \times 10^{6} \mathrm{~J}
\end{aligned}
$$

Math 252: Quiz 4
22 September, 2022
2. [8 points] Find the derivative $\frac{d y}{d x}$ or the indefinite integral. (Hint: Use " $+C$ " where needed.)
a. $y=\log _{10} x=\frac{\ln x}{\ln 10}$

b. $\quad \int \frac{(\ln x)^{2} d x}{x}=$ $\int u^{2} d u=\frac{u^{3}}{3}+c$ x
$\left[\begin{array}{l}u=\ln x \\ d u=\frac{d x}{x}\end{array}\right]$

c. $y=x^{(e x)}$ $\ln y=e x \ln x$ $\frac{1}{y} \frac{d y}{d x}=e\left(1 \cdot \ln x+x \cdot \frac{1}{x}\right)$

a. $==\left(\frac{1+a}{(x-a)}=\ln (x+a)-\ln (x-a)\right.$

3. [7 points] A 1 meter car antenna has linear mass density, starting from the base at $x=0$, of $\rho(x)=2+\frac{x}{100}$ grams per centimeter. What is its mass? Simplify your answer and give units.

Math 252: Quiz 4
EC. [1 points] (Extra Credit) Assuming $x>0$, fully simplify:

$$
\begin{aligned}
& \left.\frac{\frac{d}{d x}\left(\int_{x}^{x^{2}} \frac{d t}{t}\right)^{(1)}}{=\text { (l) }} \frac{d}{d x}(\ln |t|]_{x}^{x^{2}}\right)=\frac{d}{d x}\left(\ln \left(x^{2}\right)-\ln x\right) \\
& (2)=\text { FTC }=\frac{1}{x^{2}} \cdot 2 x-\frac{1}{x}=\frac{2}{x}-\frac{1}{x} \\
& =\frac{1}{x} \\
& \frac{d}{d x}\left(\int_{x}^{x^{2}} \frac{d t}{t}\right) \stackrel{(2)}{=} \frac{d}{d x}\left(\int_{x}^{a} \frac{d t}{t}+\int_{a}^{x^{2}} \frac{d t}{t}\right)=\frac{d}{d x}\left(-\int_{a}^{x} \frac{d t}{t}+\int_{a}^{x^{2}} \frac{d t}{t}\right) \\
& =-\frac{1}{x}+\frac{1}{x^{2}} \cdot 2 x=\frac{1}{x} \\
& \text { ales) }
\end{aligned}
$$

