Name: \qquad

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [10 points] Find the work required to pump all the water out of a cylinder which has a circular base of radius 4 meters and height 10 meters. Use the fact that water has a mass density of 1000 $\mathrm{kg} / \mathrm{m}^{3}$, and use $g=10 \mathrm{~m} / \mathrm{s}^{2}$ as an approximation of the acceleration of gravity. (Hint: Start by drawing a decent sketch and considering a slice of water; a good sketch is worth 2 points. Simplify your answer and give units.)
2. [8 points] Find the derivative $\frac{d y}{d x}$ or the indefinite integral. (Hint: Use " $+C$ " where needed.)
a. $y=\log _{10} x$
b. $\quad \int \frac{(\ln x)^{2} d x}{x}=$
c. $\quad y=x^{(e x)}$
d. $\quad y=\ln \left(\frac{x+a}{x-a}\right)$
3. [7 points] A 1 meter car antenna has linear mass density, starting from the base at $x=0$, of $\rho(x)=2+\frac{x}{100}$ grams per centimeter. What is its mass? Simplify your answer and give units.

Math 252: Quiz 4
EC. [1 points] (Extra Credit) Assuming $x>0$, fully simplify:
$\frac{d}{d x}\left(\int_{x}^{x^{2}} \frac{d t}{t}\right)=$

