Name: \qquad
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [9 points] For each part below, completely set up, but do not evaluate, an integral for the quantity.
a. The length of the curve $y=\frac{x^{2}}{8}-\ln x$ on the interval $1 \leq x \leq 3$.

$$
f(x)=\frac{x^{2}}{8}-\ln x
$$

$$
f^{\prime}(x)=\frac{x}{4}-\frac{1}{x}
$$

b. The area of the surface formed by revolving the graph of $y=x^{4}$, on the interval $[-1,1]$, around the x-axis.

$$
A=\int_{-1}^{1} 2 \pi x^{4} \sqrt{1+\left(4 x^{3}\right)^{2}} d x
$$

$$
f(x)=x^{4}
$$

$$
f^{\prime}(x)=4 x^{3}
$$

c. The area between the graphs of $y=e^{-x^{2}}$ and $y=2 x+7$ on the interval $[-1,1]$.

$$
\int_{-1}^{1}(2 x+7)-e^{-x^{2}} d x
$$

2. [8 points]
a. Sketch the region between $y=e^{-x^{2}}$ and the x-axis, on the interval $[1,2]$.

b. Find the volume of the solid formed by revolving the region in part a around the y-axis. (Yes, you can do the integral if you use the right volume technique.)

$=\pi \int_{-4}^{-1} e^{u} d u$

$$
=\pi\left(e^{-1}-e^{-4}\right)
$$

3. [8 points] Find the area of the surface of revolution from rotating $y=x^{2}$ from $x=0$ to $x=1$ around the y-axis. (Yes, you can do the integral.)

$$
\begin{aligned}
& A= \\
& \int_{0}^{1} 2 \pi \sqrt{y} \sqrt{1+\left(\frac{1}{2 \sqrt{y}}\right)^{2}} d y \\
& g(y)=\sqrt{y} \\
& =2 \pi \int_{0}^{1} \sqrt{y} \sqrt{1+\frac{1}{4 y}} d y \\
& =2 \pi \int_{0}^{1} \sqrt{y+\frac{1}{4}} d y \\
& \begin{array}{l}
=2 \pi \int_{1 / 4}^{5 / 4} \sqrt{u} d u \quad\left[\begin{array}{l}
u=y+\frac{1}{4} \\
d u=d y
\end{array}\right] \\
\left.=2 \pi \cdot \frac{2}{3} u^{3 / 2}\right]_{1 / 4}^{5 / 4}
\end{array} \\
& =\frac{4 \pi}{3}\left((5 / 4)^{3 / 2}-(1 / 4)^{3 / 2}\right) \leftarrow \text { just five! } \\
& =\frac{4 \pi}{3}\left(\frac{5^{3 / 2}-1}{8}\right) \quad\left(\text { since } 4^{3 / 2}=\left(4^{1 / 2}\right)^{3}\right) \\
& \begin{array}{l}
=2 \pi \int_{1 / 4}^{5 / \sqrt{u}} d u \quad\left[\begin{array}{l}
u=y+\frac{1}{4} \\
d u=d y
\end{array}\right] \\
\left.=2 \pi \cdot \frac{2}{3} u^{3 / 2}\right]_{1 / 4}^{5 / 4}
\end{array} \\
& \xrightarrow[\substack{\text { hop }}]{\substack{y}} \\
& =\frac{\pi}{6}\left(5^{3 / 2}-1\right) \leftarrow \text { also just fine! }
\end{aligned}
$$

EC. [1 points] (Extra Credit) Though I do not know how to find antiderivatives for the integrals in 1b and $\mathbf{1 c}$, the integral in 1a can be computed by hand. Do so.

BLANK SPACE

