Name: \qquad

30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [9 points] For each part below, completely set up, but do not evaluate, an integral for the quantity.
a. The length of the curve $y=\frac{x^{2}}{8}-\ln x$ on the interval $1 \leq x \leq 3$.
b. The area of the surface formed by revolving the graph of $y=x^{4}$, on the interval $[-1,1]$, around the x-axis.
c. The area between the graphs of $y=e^{-x^{2}}$ and $y=2 x+7$ on the interval $[-1,1]$.

2. [8 points]

a. Sketch the region between $y=e^{-x^{2}}$ and the x-axis, on the interval $[1,2]$.
b. Find the volume of the solid formed by revolving the region in part a around the y-axis. (Yes, you can do the integral if you use the right volume technique.)
3. [8 points] Find the area of the surface of revolution from rotating $y=x^{2}$ from $x=0$ to $x=1$ around the y-axis. (Yes, you can do the integral.)

EC. [1 points] (Extra Credit) Though I do not know how to find antiderivatives for the integrals in 1b and $\mathbf{1 c}$, the integral in $\mathbf{1 a}$ can be computed by hand. Do so.

