Name: \square / 25
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [7 points] Find the area of the region in the first quadrant enclosed by $y=2-2 x, y=2-x^{2}$, and the x-axis. (Hint: Careful sketch first. Integrating with respect to either x or y will work.)

or:

$$
\begin{aligned}
\underline{\text { r. }} & =\int_{0}^{2} \sqrt{2-y}-\left(1-\frac{y}{2}\right) d y=\int_{2}^{0} \sqrt{u}(-d u)-\int_{0}^{2} 1-\frac{y}{2} d y \\
& =\int_{0}^{2} \sqrt{u} d u+\int_{0}^{2 y} \frac{y}{2}-1 d y=\left[\frac{2}{3} u^{3 / 2}\right]_{0}^{2}+\left[\frac{y^{2}}{4}-y\right]_{0}^{2}=\frac{2}{3} \frac{2 \sqrt{2}+1-2}{\frac{4 \sqrt{2}}{3}-1}
\end{aligned}
$$

2. [13 points]
a. Sketch the region bounded by $y=x^{2}, y=0$, and $x=1$.

b. Find the volume of the solid formed by revolving the region in part a. around the x-axis. (Hint: Use discs or washers.)

$$
\begin{aligned}
V & =\int_{0}^{1} \pi\left(x^{2}\right)^{2} d x=\pi \int_{0}^{1} x^{4} d x \\
& =\pi\left[\frac{x^{5}}{5}\right]_{0}^{1}=\frac{\pi}{5}
\end{aligned}
$$

c. Find the volume of the solid formed by revolving the region in part a. around the y-axis. (Hint: Use discs or washers.)

$$
\begin{aligned}
V & =\int_{0}^{1} \pi\left(1^{2}-(\sqrt{y})^{2}\right) d y \\
& =\pi \int_{0}^{1} 1-y d y=\pi\left[y-\frac{y^{2}}{2}\right]_{0}^{1} \\
& =\pi\left[1-\frac{1}{2}\right]=\frac{\pi}{2}
\end{aligned}
$$

3. [5 points] A solid has a base which is the unit circle in the x, y plane, and each cross-section parallel to the x-axis is a square. Find the volume.

8 September, 2022
EC. [1 points] (Extra Credit) Rotating the line $y=x$, on the interval $0 \leq x \leq 1$, around the x-axis generates a cone. Find the area of this cone; do not include the area of the "base" of the cone at $x=1$. (Hint: No need to integrate! Unroll and do geometry!)

BLANK SPACE

