Name:
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [8 points] Consider the parametric curve

$$
x(t)=5 \cos t, \quad y(t)=\sin t
$$

a. Determine the slope and the equation of the tangent line at $t=\pi / 2$.

$$
\begin{aligned}
& m=\left.\frac{d y}{d x}\right|_{t=\pi / 2}=\left.\frac{d y / d t}{d x / d t}\right|_{t=\pi / 2} \\
&=\left.\frac{\cos t}{-5 \sin t}\right|_{t=\pi / 2}=\frac{0}{-5}=0 \\
& x(\pi / 2)=0, y(\pi / 2)=1 \Rightarrow y-1=0(x-0) \\
&(\sin x)=0 \quad y=1
\end{aligned}
$$

b. Eliminate the parameter t to write the curve in rectangular form.

2. [5 points] Fully set up, but do not evaluate, an integral for the length of the spiral curve $x(t)=$ $t \cos t, y(t)=t \sin t$ from $t=0$ to $t=2 \pi$.

3. [5 points] Find $\frac{d^{2} y}{d x^{2}}$:

4. [7 points] Find the area under one hump of the cycloid

$$
x(t)=2(t-\sin t), \quad y(t)=2(1-\cos t)
$$

(Hint. One hump goes from $t=0$ to the next t where $y(t)=0$.)

$$
\begin{aligned}
A & =\int_{t=2 \pi} y \frac{d x}{d t} d t \\
& =\int_{0}^{2 \pi} 2(1-\cos t) \cdot 2(1-\cos t) d t \\
& =4 \int_{0}^{2 \pi} 1-2 \cos t+\cos ^{2} t d t \\
& =4 \int_{0}^{2 \pi} 1-2 \cos t+\frac{1}{2}+\frac{1}{2} \cos (2 t) d t \\
& \left.=4\left[\frac{3}{2} t-2 \sin t+\frac{1}{4} \sin (2 t)\right]\right]_{0}^{2 \pi} \\
& =4\left(\left(\frac{3}{2} \cdot 2 \pi-0+0\right)-(0-0+0)\right) \\
& =12 \pi
\end{aligned}
$$

3 valid methods shown

EC. [1 points] (Extra Credit) Eliminate the parameter to write the curve $x(t)=\sin (2 t), y(t)=2 \sin t$ in rectangular form.
(1) $x=2 \sin t \cos t=y \cos t=y \cdot \sqrt{1-\sin ^{2} t}$

$$
x= \pm y \sqrt{1-\left(\frac{y}{2}\right)^{2}}
$$

(2) $\quad x=2 \sin t \cos t=y \cos t \quad \therefore \frac{x}{y}=\cos t, \frac{y}{2}=\sin t$

$$
\therefore\left(\frac{x}{y}\right)^{2}+\left(\frac{y}{2}\right)^{2}=1
$$

(3) $t=\frac{1}{2} \arcsin (x) \quad \therefore \quad y=2 \sin t=2 \sin \left(\frac{\arcsin x}{2}\right)$

EXTRA SPACE FOR ANSWERS

