Math 252: Quiz 10
SOLUTIONS
Name: \qquad
30 minutes maximum. No aids (book, calculator, etc.) are permitted. Show all work and use proper notation for full credit. Answers should be in reasonably-simplified form. 25 points possible.

1. [8 points] Using any convenient method, find the Maclaurin series of the given function.
a. $f(x)=r^{x}=\left(e^{\ln 7)^{x}}=e^{(\ln 7)^{x} x}\right.$

b. $f(x)=\cos (\sqrt{x})$ $\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$

$\int \cos (\sqrt{x}) d x=$

$$
\int \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{(2 n)!} d x
$$

$$
=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \int x^{n} d x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \frac{x^{n+1}}{n+1}+C
$$

$$
=c+x-\frac{x^{2}}{2 \cdot 2!}+\frac{x^{3}}{3 \cdot 4!}-\frac{x^{4}}{4 \cdot 6!}+\ldots \quad \text { is fine }
$$

3. [6 points] Let $f(x)=\sqrt[3]{x}$.
a. Find the first and second Taylor polynomials, of degrees 1 and 2 , of $f(x)$ at $x=2$.

$$
\begin{array}{ll}
\begin{array}{ll}
\text { a. Find the first and second Taylor polynomials, of degrees } 1 \text { and } 2 \text {, of } f(x) \text { at } x \\
f(x) & =x^{1 / 3} \\
f(2)=2^{1 / 3} & p_{1}(x)=2^{1 / 3}+\frac{1}{3 \cdot 2^{2 / 3}}(x-2) \\
f^{\prime}(x) & =\frac{1}{3} x^{-2 / 3} \\
f^{\prime}(2)=\frac{1}{3 \cdot 2^{2 / 3}} \\
f^{\prime \prime}(x) & =\frac{-2}{9} x^{-5 / 3} \\
f^{\prime \prime}(2) & =\frac{-2}{9 \cdot 2^{5 / 3}} \\
\text { b. Use the first Taylor polynomial to estimate } \sqrt[3]{3} .
\end{array} & -\frac{2}{9 \cdot 2^{5 / 3}} \frac{1}{2}(x-2)^{2}
\end{array}
$$

$$
\sqrt[3]{3}=f(3) \approx p_{1}(3)=2^{1 / 3}+\frac{1}{3 \cdot 2^{2 / 3}}(3-2)
$$

calculator:

$$
=2^{1 / 3}+\frac{1}{3 \cdot 2^{2 / 3}}
$$

$$
p_{1}(3)=1.4699 \quad\left(\text { also }: \quad p_{2}(3)=1.4349\right)
$$

4. [7 points] Use the ratio or root test, plus a check on series convergence at the endpoints, to find the interval of convergence of the Maclaurin series for $f(x)=\ln (1+x)$.

$$
f(x)=\ln (1+x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}
$$

ratiodest:

$$
\begin{aligned}
& \frac{\text { ratio test: }}{\rho=} \lim _{n \rightarrow \infty} \frac{\left|(-1)^{n+1} \frac{x^{n+2}}{n+2}\right|}{\left\lvert\,(-1)^{n} \frac{x^{n+1}}{n+1}=\lim _{n \rightarrow \infty} \frac{|x|^{n+2}(n+1)}{(n+2)|x|^{n+1}}\right.} \begin{aligned}
=|x| \lim _{n \rightarrow \infty} \frac{n+1}{n+2}=|x| \cdot 1<1 \\
-1<x<1 \\
x=-1: \sum_{n=0}^{\infty}(-1)^{n} \frac{(-1)^{n+1}}{n+1}=\sum_{n=0}^{\infty} \frac{-1}{n+1}=-\sum_{n=0}^{\infty} \frac{1}{n+1} \\
\text { diverge: harmonic senses }=-\sum_{m=1}^{\infty} \frac{1}{m}
\end{aligned}
\end{aligned}
$$

$x=1: \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n+1} \quad$ alternating

$$
b_{n}=\frac{1}{n+1} \rightarrow 0 \text {, decrease. }
$$

\therefore converge by AST
inter val of convergence: $I=(-1,1]$

EC. [1 points] (Extra Credit) Find the value of the 24th derivative of $f(x)=e^{x^{2}}$ at $x=0$. (Hint. Taylor series? It relates to derivatives at $x=0$.)

$$
\begin{aligned}
& e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& \therefore f(x)=e^{x^{2}}=\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!} \\
& \begin{array}{l}
\text { but: } c_{n}=\frac{f^{(n)}(0)}{n!} \text { is the coefficient } \\
\text { of } x^{n}
\end{array} \quad \begin{array}{l}
\text { So: } \frac{1}{12!}=\frac{f^{(24)}(0)}{24!} \quad \begin{array}{l}
f^{(24)}(0)=\frac{24!}{12!} \\
=24 \cdot 23 \cdots \cdot 14 \cdot 13
\end{array}
\end{array}
\end{aligned}
$$

