Homework 5.4: Replacement problems

The Exercises in this section are not well-aligned to the text! Here are replacements. Use the comparison test to determine whether the series converge or diverge.

1. $\sum_{n=1}^{\infty} a_{n}$ where $a_{n}=\frac{2}{n(n+1)}$
2. $\sum_{n=1}^{\infty} \frac{1}{2(n+1)}$
3. $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$
4. $\sum_{n=2}^{\infty} \frac{1}{(n \ln n)^{2}}$
5. $\sum_{n=1}^{\infty} \frac{n!}{(n+2)!}$
6. $\sum_{n=1}^{\infty} \frac{1}{n!}$
7. $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n^{2}}$

Use the limit comparison test to determine whether the series converge or diverge.
8. $\sum_{n=0}^{\infty} \frac{1}{n+3}$
9. $\sum_{n=2}^{\infty} \frac{1}{n^{2}-\sqrt{n}}$
10. $\sum_{n=1}^{\infty} \frac{3^{n}}{5^{n}+4^{n}}$
11. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$
12. $\sum_{n=1}^{\infty} \frac{1}{4^{n}-3^{n}}$
13. Does $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{p}}$ converge if p is large enough? If so, for which p ?
14. For which p does the series $\sum_{n=1}^{\infty} \frac{2^{p n}}{3^{n}}$ converge? Why?
15. For which $p>0$ does the series $\sum_{n=1}^{\infty} \frac{n^{p}}{2^{n}}$ converge? Why?
16. Suppose that $a_{n}>0$ and that $\sum_{n=1}^{\infty} a_{n}$ converges. Suppose also that b_{n} is an arbitrary sequence of zeros and ones. Does $\sum_{n=1}^{\infty} a_{n} b_{n}$ necessarily converge? Explain using a convergence test.
17. Show that if $a_{n} \geq 0$ and $\sum_{n=1}^{\infty} a_{n}^{2}$ converges, then $\sum_{n=1}^{\infty} \sin ^{2}\left(a_{n}\right)$ converges. (Hint. Use a convergence test, and the fact that $|\sin \theta| \leq|\theta|$.
18. Let d_{n} be an infinite sequence of digits, meaning d_{n} takes values in $\{0,1, \ldots, 9\}$. What is the largest possible value of $x=\sum_{n=1}^{\infty} \frac{d_{n}}{10^{n}}$ that converges?

