Name: S O LuTI ONS

Math 252 Calculus 2 (Bueler) Thursday, 7 April 2022

Midterm Exam 2

No book, notes, electronics, calculator, or internet access. 100 points
possible. 70 minutes maximum.

1. Compute and simplify the improper integrals, or show they diverge. Use correct limit notation. g
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2. (5 pts)  Does the following series converge or diverge? Show your work, including naming any test
you use. (Hint. Previous problem? Or another test?)
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3. Do the following series converge or diverge? Show your work, including naming any test you use.
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4. (5 pts) For one of the five series in problem 3, it is possible to compute the value of the infinite
series. Which one? Explain why, and compute the value.
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5. ider the infinit jes1l— -4+ - — -+ - — ...
Consider the infinite series 5 + 3 4 + =
(a) (5 pts)  Write the series using sigma (X) notation.
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(b) (5 pts)  Compute and simplify Sy, the partial sum of the first four terms.
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6. (5 pts)  Does the series Z 3) converge absolutely, conditionally, or neither (diverge)? Show
n
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your work and circle one answer.
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7. By any method, write a power series for the following functions. Show your work.
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(b) (7 pts)  arctanz

(Hint. Integrate a series derived from the geometric series.)
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8. Find the interval of convergence of the following power series.
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9. (9pts) Find the Taylor series of f(z) = — at basepoint a = 2.
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10. (7pts)  Use the midpoint rule with n = 2 subintervals to estimate / 23 dz. Simplify your result.
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Extra Credit. (3 pts)  Recall the famous Maclaurin series e* = Z —- Suppose I put x = —% in
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this power series. In fact, suppose I compute the 10th partial sum Sig = Z
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Matlab, that it gives more than 10 digits of accuracy in approximating e™"/= = \/Lé Explain why, using
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