Midterm Exam 2
No book, notes, electronics, calculator, or internet access. 100 points possible. 70 minutes maximum.

1. Compute and simplify the improper integrals, or show they diverge. Use correct limit notation. 3

$$
\left.=\frac{4}{3} \lim _{a \rightarrow 0^{-}}\left(1-a^{3 / 4}\right)=\frac{4}{3}(1-0)=\frac{4}{3}\right)
$$

2. (5 pts) Does the following series converge or diverge? Show your work, including naming any test you use. (Hint. Previous problem? Or another test?)

3. Do the following series converge or diverge? Show your work, including naming any test you use (a) $(5, p k) \sum_{n=1}^{n+2} \frac{n+2}{4^{n}} \quad$ [root or limit coup anion work]

$$
p=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n+2}{4^{n}}}=\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n+2}}{4}=\frac{1}{4}<1
$$

\therefore converge
(b) (5 pts) $\quad \sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n}}{4^{n}}$
geometric with $r=-\frac{3}{4}$ so $|r|<1$
So converge
(c) (5pts) $\quad \sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln n}$
by AST: $b_{n}=\frac{1}{\ln x} \geq 0$

$$
\lim _{n \rightarrow \infty} b_{n}=0
$$

b_{n} decrassing
\therefore converges
(d) (spits) $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ ratio test

$$
\begin{aligned}
& \rho=\lim _{n \rightarrow \infty} \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^{n}}}=\lim _{n \rightarrow \infty} \frac{(n+1) n^{n}}{(n+1)^{n+1}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}}=\frac{1}{e}<1 \quad \therefore \text { Converges }
\end{aligned}
$$

(e) (sEpts) $\sum_{n=1}^{\infty} \frac{(\cos n)^{2}}{n^{2}}$ Companion test

$$
(\cos n)^{2} \leq 1
$$

so $a_{n} \leq \frac{1}{n^{2}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges $(p=2)$
\therefore converges
4. (5 pts) For one of the five series in problem 3, it is possible to compute the value of the infinite series. Which one? Explain why, and compute the value.
(b): geometric with $a=1, r=-3 / 4$

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 3^{n}}{4^{n}}=\frac{1}{1-(-3 / 4)}=\frac{1}{7 / 4}=\frac{4}{7}
$$

5. Consider the infinite series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots$
(a) (5 pts) Write the series using sigma (Σ) notation.

(b) (5 pts) Compute and simplify S_{4}, the partial sum of the first four terms.

$$
S_{4}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}=\frac{12-6+4-3}{12}=\frac{7}{12}
$$

6. (5 pts) Does the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}$ converge absolutely, conditionally, or neither (diverge)? Show your work and circle one answer.

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{3}} \text { converge }(p=3)
$$

CONVERGES CONDITIONALLY

DIVERGES
7. By any method, write a power series for the following functions. Show your work.
geometric

$$
=\sum_{n=0}^{\infty}(-1)^{n} 2^{n} x^{n}
$$

(b) (7pts) $\quad \arctan x$

$$
\begin{aligned}
& \arctan x=\int_{0}^{x} \frac{1}{1+t^{2}} d t=\int_{0}^{x} \sum_{n=0}^{\infty}\left(-t^{2}\right)^{n} d t \\
& =\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{x} t^{2 n} d t \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
\end{aligned}
$$

6
8. Find the interval of convergence of the following power series (a) $\left(\gamma p(s) \sum_{n=1}^{\infty} \frac{n^{n}}{}\right.$ root test:

$$
\begin{aligned}
& \rho=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{x^{n}}{n 2^{n}}\right|}=\lim _{n \rightarrow \infty} \frac{|x|}{\sqrt[n]{n} \cdot 2} \\
&=\frac{|x|}{2}<1 \quad \therefore \text { converge on } \\
&-2<x<2
\end{aligned}
$$

$\frac{x=-2:}{} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converse (AST)
$x=+2: \sum_{n=1}^{\infty} \frac{1}{n} d_{\text {wieupr (hammic }} \therefore I=[-2,2)$
(b) (5 p p) $\sum_{n=1}^{\infty}(n-1)!:^{n}$

$$
\begin{aligned}
P & \left.\left.=\lim _{n \rightarrow \infty} \frac{n!\left(\left.x\right|^{n+1}\right.}{(n-1)!|x|^{n}}=\lim _{n \rightarrow \infty} n \right\rvert\, x\right) \\
& =+\infty \quad \text { if } x \neq 0
\end{aligned}
$$

so

$$
I=[0,0]
$$

(converge only at $x=0$)
9. (9 pts) Find the Taylor series of $f(x)=\frac{1}{x}$ at basepoint $a=2$.

$$
\begin{array}{rl}
f(x)=\frac{1}{x}=x^{-1} & f(a)=2^{-1} \\
f^{\prime}(x) & =-x^{-2} \\
f^{\prime \prime}(x) & =+2 x^{-3} \\
f^{\prime \prime \prime}(x) & =-3 \cdot 2 x^{-4} \\
\vdots & \quad f^{(n)}(a)=(-1)^{n} n!2^{-(n+1)} \\
f^{(n)}(x) & =(-1)^{n} n!x^{-(n+1)} \quad \text { any } n \\
\therefore \quad f(x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n} n!2^{-(n+1)}}{n!}(x-2)^{n} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}(x-2)^{n}}
\end{array}
$$

10. ($\gamma p t s)$ Use the midpoint rule with $n=2$ subintervals to estimate $\int_{0}^{1} x^{3} d x$. Simplify your result.

$$
\begin{aligned}
& \int_{0}^{1} x^{3} d x \approx M_{2} \\
& M_{2}=0.5 \cdot\left(\frac{1}{4}\right)^{3} \\
& \quad+0.5\left(\frac{3}{4}\right)^{3} \\
& =\frac{1}{2}\left(\frac{1+27}{64}\right)=\frac{28}{128}=\frac{7}{32}
\end{aligned}
$$

$\begin{aligned} \text { Vs. exact: } & \int_{0}^{1} x^{3} d x \\ = & 1 / 4\end{aligned}$

Extra Credit. (3 pts) Recall the famous Maclaurin series $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. Suppose I put $x=-\frac{1}{2}$ in this power series. In fact, suppose I compute the 10 th partial sum $S_{10}=\sum^{10} \frac{(-1 / 2)^{n}}{n!}$. I observe, using Matlab, that it gives more than 10 digits of accuracy in approximating $e^{-1 / 2}=\frac{1}{\sqrt{e}}$. Explain why, using a known fact about remainders
$e^{-1 / 2}=\sum_{n=0}^{\infty} \frac{(-1 / 2)^{n}}{n!}$ is alternation

$$
\begin{gathered}
\left|R_{10}\right|=\left|e^{-1 / 2}-s_{10}\right| \leq b_{11}=\frac{1}{2^{11} 11!} \\
b_{n}=\frac{(1 / 2)^{n}}{n!}-7 \text { copies of at least } 10
\end{gathered}
$$

but $z^{11} 11!=(11) \cdot(10) \cdot(9) \cdot(8) \cdot(2) \cdot(2) \cdot 6 \cdot(5) \cdot 4 \cdot 3 \cdot 2 \cdot 2 \cdot 1$

$$
\text { (2). (2) (2): (2) (2). } 2^{6}
$$

note each " ()$^{\prime \prime}$ is a l least 10 , and $4 \cdot 3 \cdot 2 \cdot 2^{6} \geq 10^{3}$

$$
\text { so } 2^{11} \cdot 11!\geqslant 10^{10} \text { so } \quad b_{11} \leq 10^{-10}
$$

so 10 digit accuracy!

$$
\begin{aligned}
& 4 \cdot 3 \cdot 2 \cdot 2^{6} \\
& =12 \cdot 128 \geq 10^{3}
\end{aligned}
$$

