Midterm Exam 1
No book, notes, electronics, calculator, or internet access. 100 points possible. 70 minutes maximum.

1. (8 pts) Compute the area between the curves $y=\cos (x)$ and $y=\cos ^{2}(x)$ on the interval $0 \leq x \leq \pi / 2$. (Hint. Be careful about which curve is above the other.)

2. (6 pts) Completely set up, but do not evaluate, a definite integral for the length of the curve $y=\frac{1}{x}$ on the interval $x=1$ to $x=10$.

3. Evaluate and simplify the following indefinite and definite integrals.
(a) $(6 p t s)$
 $\binom{u=\cos x}{d u=-\sin x d x}$
${ }^{(b)(b)(p, t)} \int_{0}^{1} 0^{3} x d x=\left[\frac{3^{x}}{\ln 3}\right]_{0}^{1}=\frac{3-1}{\ln 3}=\frac{2}{\ln 3}$
(c) (6 pts) $\quad \int_{0}^{\pi / 4} \tan ^{3} x \sec ^{2} x d x=$ $\int_{0}^{1} u^{3} d u$ $\binom{u=\tan x}{d u=\sec ^{2} x d x}$

$$
\left.=\frac{u^{4}}{4}\right]_{0}^{1}=\frac{1}{4}
$$

(d) $(8 p t s) \int \cos ^{2}(7 t) \sin ^{3}(7 t) d t=\int \cos ^{2}(7 t) \sin ^{2}(7 t) \sin (7 t) d t$

$$
\begin{aligned}
& =\int \cos ^{2}(7 t)\left(1-\cos ^{2}(7 t)\right) \sin (7 t) d t \\
& r(u=\cos (7 t), d u=-7 \sin (7 t) d t) \\
& =\int u^{2}\left(1-u^{2}\right) \frac{d u}{-7}=-\frac{1}{7} \int u^{2}-u^{4} d u \\
& =-\frac{1}{7}\left(\frac{u^{3}}{3}-\frac{u^{5}}{5}\right)+C=\frac{1}{35} \cos ^{5}(7 t)-\frac{1}{21} \cos ^{3}(7 t)
\end{aligned}
$$

(e) $(8 p t s) \quad \int \cos (7 t) \cos (3 t) d t=$
\leftarrow see $\cos (a x) \cos (b x)$ on last

$$
\begin{aligned}
& =\frac{1}{2} \int \cos (4 t)+\cos (10 t) d t \\
& =\frac{1}{2}\left(\frac{1}{4} \sin (4 t)+\frac{1}{10} \sin (10 t)\right)+C \\
& =\frac{1}{8} \sin (4 t)+\frac{1}{20} \sin (10 t)+C
\end{aligned}
$$

(g) ($8 p t s)$

$$
\int z^{2} e^{z} d z=z^{2} e^{z}-2 \int z e^{z} d z
$$

$$
\left(\begin{array}{cc}
u=z^{2} & v=e^{z} \\
d u=2 z d z & d v=e^{z} d z
\end{array}\right) \quad<\left(\begin{array}{cc}
w=z & y=e^{z} \\
d w=d z & d y=e^{z} d z
\end{array}\right)
$$

$$
=z^{2} e^{z}-2\left(z e^{z}-\int e^{z} d z\right)
$$

$$
=z^{2} e^{z}-2 z e^{z}+2 e^{z}+c
$$

$$
=\left(z^{2}-2 z+2\right) e^{z}+C
$$

$$
\begin{aligned}
& { }_{(\text {f) }(8 p t s)} \int_{\frac{x}{x^{2}-4 x-5} d x=}=\frac{x}{(x-5)(x+1)}=\frac{B}{X-5}+\frac{B}{X+1} \\
& 1 \cdot x+0=A(x+1)+B(x-5) \\
& =(A+B) x+(A-5 B) \\
& \left.\begin{array}{l}
A+B=1 \\
A-5 B=0
\end{array}\right\} \quad 6 B=1 \quad \therefore B=\frac{1}{6} \\
& A=\frac{5}{6}
\end{aligned}
$$

4. (a) (4 pts) Sketch the region bounded by the curves $y=\ln x, x=1$, and $y=1$.

(b) (8 pts) Use shells to find the volume of the solid of revolution found by rotating the region in part (a) around the x-axis.

$$
\begin{aligned}
V & =\int_{0}^{1} 2 \pi y \cdot\left(e^{y}-1\right) \cdot d y \\
& =2 \pi \int_{0}^{1} y e^{y} d y-2 \pi \int_{0}^{1} y d y \\
& \bar{\uparrow} 2 \pi\left(\left[y e^{y}\right]_{0}^{1}-\int_{0}^{1} e^{y} d y\right)-2 \pi \cdot \frac{1}{2} \\
& \left(\begin{array}{l}
u=y \\
d u=d y \\
d v=e^{y} \\
e^{y} d y
\end{array}\right) \\
& =2 \pi\left(e-0-\left[e^{y}\right]_{0}^{1}\right)-\pi \\
& =2 \pi(e-e+1)-\pi=2 \pi-\pi=\pi
\end{aligned}
$$

(c) (8 pts) Fully set up, but do not evaluate, the three integrals needed to compute the center of mass (\bar{x}, \bar{y}) of the region in part (a) (previous page). Then fill in the blanks at the bottom, to show how to compute the values \bar{x} and \bar{y}.

5. Which trigonometric substitution would you use for the following two integrals? Write the substitudion in the box. (There is no need to compute the integrals here.)
(a) (4 pts) $\int \sqrt{x^{2}-16} d x$
(b) $(4 \mathrm{pts}) \int \frac{t^{2}}{\sqrt{1-4 t^{2}}} d t$
$2 t=\sin \theta$
6. (8 pts) Evaluate and simplify the integral in $\mathbf{5}(\mathbf{b})$ above.

$$
\begin{array}{lr}
=\int \frac{\frac{1}{4} \sin ^{2} \theta}{\cos \theta} \frac{1}{2} \cos \theta d \theta & \begin{array}{c}
2 d t=\cos \theta . \\
t=\frac{1}{2} \sin \theta
\end{array} \\
=\frac{1}{8} \int \sin ^{2} \theta d \theta & \sqrt{1-4 t^{2}}=\cos \theta \\
=\frac{1}{16} \int 1-\cos (2 \theta) d \theta=\frac{1}{16}\left(\theta-\frac{1}{2} \sin (2 \theta)\right)+C
\end{array}
$$

$$
\begin{aligned}
& =\frac{1}{16}(\arcsin (2 t)-\sin \theta \cos \theta)+c \\
& =\frac{1}{16}\left(\arcsin (2 t)-2 t \sqrt{1-4 t^{2}}\right)+c
\end{aligned}
$$

Extra Credit. (3 pts) A donut (torus) surface is created by rotating a circle with radius one and center $(x, y)=(2,0)$ around the y-axis. Fully set up, but do not evaluate, an integral for the surface area of this donuts.

it turns out that the surface

i's $4 \pi^{2} a b$, and above integral gives
You may find the following trigonometric formulas useful. However, there are other trig. formulas, not listed here, which you should have in memory, or which you know how to derive from these.

$$
\begin{aligned}
\sin (\alpha \pm \beta) & =\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
\cos (\alpha \pm \beta) & =\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
\sin (a x) \sin (b x) & =\frac{1}{2} \cos ((a-b) x)-\frac{1}{2} \cos ((a+b) x) \\
\sin (a x) \cos (b x) & =\frac{1}{2} \sin ((a-b) x)+\frac{1}{2} \sin ((a+b) x) \\
\cos (a x) \cos (b x) & =\frac{1}{2} \cos ((a-b) x)+\frac{1}{2} \cos ((a+b) x)
\end{aligned}
$$

