Your Name	Signature (you agree to complete honestly)
Student ID#	
Start Time	End Time

Page	Total Points	Score
2	10	
3	10	
4	11	
5	13	
6	10	
7	8	
8	7	
9	8	
10	10	
11	10	
12	3	
Total	100	

- You will have 2.5 hours to complete the exam.
- This test is closed book and you may not use a calculator.
- You may use one side of a single piece of paper (8 1/2 in. x 11 in.) of handwritten notes.
- In order to receive full credit (or partial credit in the case of incorrect solutions), you must **show your work.** Please write out your computations on the exam paper.
- Simplify all obvious expressions.
- PLACE A BOX AROUND YOUR FINAL ANSWER to each question where appropriate.

1. (20 points) Evaluate the following integrals.

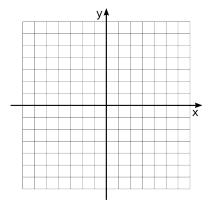
(a)
$$\int_0^{\pi/4} \sec^4 x \tan^2 x \, dx$$

(b)
$$\int \arctan(2x) \, dx$$

(c)
$$\int \frac{4x}{(x^2+4)(x-2)} dx$$

$$(d) \int \frac{1}{x^2 \sqrt{x^2 - 9}} \, dx$$

- 2. (11 points) Let R be the region bounded by the graphs of f(x) = 2x 1, $g(x) = (x 2)^2$.
 - (a) Graph the region and then set up, but do not solve, an integral that gives the **area** of R.



(b) Set up, but do not solve, an integral that finds the **volume** of the solid when R is rotated about the y-axis.

(c) Set up, but do not solve, an integral that finds the volume of the solid when R is rotated about the line y=-1.

(d) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square whose sides are the length of the base in the region R. Set up, but do not solve, an integral that gives the volume of this solid.

- 3. (4 points) Let $a_n = \sin\left(\frac{n-\pi n^2}{2n^2+3}\right)$.
 - (a) Determine whether the sequence a_n converges. If it is convergent determine what it converges to.

(b) Determine whether the series $\sum_{n=1}^{\infty} a_n$ converges or diverges. Justify your answer.

4. (5 points) Find the sum of the following series exactly.

a)
$$\sum_{n=1}^{\infty} (-2)^n 2^{-2n+1}$$

b)
$$\sum_{n=0}^{\infty} \frac{3(-1)^n 2^n}{n!}$$

5. (4 points) Find the Taylor series for the function $f(x) = e^{3x}$ centered at the point a = -1. Give your answer in summation notation.

- 6. (7 points)
 - (a) Determine whether the improper integral $\int_1^\infty x e^{-x^2}\,dx$ converges or diverges. Evaluate it if it is convergent.

(b) Use the integral test, and your answer from (a), determine whether $\sum_{n=1}^{\infty} ne^{-n^2}$ converges or diverges. You must explicitly verify that the integral test applies to this series. No credit will be given if another test is used.

- 7. (3 points) Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}.$
 - (a) Find s_4 . No need to simplify.
 - (b) At most, how far is this from the actual sum? I.e., what is the |error|?

8. (8 points) Determine whether the following series converge or diverge. You must clearly explain your reasoning.

(a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + 3}}{4 + 2n^3}$$

(b) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2}{n+3}$

9. (7 points) Find the center, radius of convergence, and the interval of convergence of the following series.

(a)
$$\sum_{n=1}^{\infty} \frac{(2x+3)^n}{(n+1)^n}$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^n (x-2)^n}{3^n \cdot n^2}$

- 10. (8 points) Let $\mathcal R$ be the region bounded by $y=e^x$ and $y=0, 0\leq x\leq 1.$
 - (a) Sketch the region and find the area of \mathcal{R} .

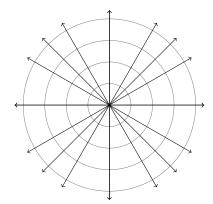
(b) Find the centroid of the the region $\mathcal{R}.$

- 11. (10 points) Consider $x = t + 2 \ln t$, $y = t \ln t$.
 - (a) Find and simplify $\frac{dy}{dx}$.

- (b) Determine the location of any horizontal tangents. If none exist, explain why.
- (c) Find and simplify $\frac{d^2y}{dx^2}$.

(d) Determine the values of t for which the curve is concave up.

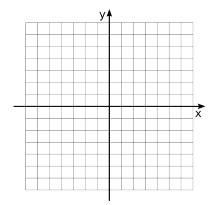
- 12. (10 points) Consider the curve $r = 2\sin(3\theta)$.
 - (a) Sketch the curve $r = 2\sin(3\theta)$.



(b) Find the area enclosed by one petal.

(c) Set up, but do not solve, an integral that gives the length of the polar curve traced out once.

- 13. (3 points) Consider the curve defined by the parametric equations $x = e^t$, $y = 2e^{-t}$.
 - (a) Graph the curve and indicate with an arrow the direction in which the curve is traced as t increases and (b) eliminate the parameter to find a Cartesian equation of the curve. [Make sure to specify any restriction on the variables.]



Extra Credit (3 points) Find the length of the polar curve $r = e^{-\theta}$ for $\theta \ge 0$.