JURKOWSKI MATH 252X FINAL EXAM SPRING 2021
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SOLUTToWS
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Page Total Points Score
2 10
3 10
4 11
5 13
6 10
7 8
8 7
9 8
10 10
11 10
12 3
Total 100

e You will have 2.5 hours to complete the exam.
o This test is closed book and you may not use a calculator.
® You may use one side of a single piece of paper (8 1/2 in. x 11 in.) of handwritten notes.

o In order to receive full credit (or partial credit in the case of incorrect solutions), you must show your
work. Please write out your computations on the exam paper.

o Simplify all obvious expressions.

e PLACE A BOX AROUND ’ YOUR FINAL ANSWER | to each question where appropriate.




1. (20 points) Evaluate the following integrals.
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2. (11 points) Let R be the region bounded by the graphs of f(z) =2z —1, g(z)= (z —2)%

(a) Graph the region and then s , but do not solve, an integral that gives the area of R.
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(b) Set up, but do not solve, an integral that finds the volume of the solid when R is rotated about
the y-axis.
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(c) Set up, but do not solve, an integral that finds the volume of the solid when R is rotated about
the line y = —1.
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(d) The region R is the base of a solid. For this solid, each cross section perpendicular to the z-axis
is a square whose sides are the length of the base in the region R. Set up, but do not solve, an
integral that gives the volume of this solid.
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3. (4 pOlI'ltS) Let Qp = SIN (m) .

(a) Determine whether the sequence a,, converges. If it is convergent determine what it converges
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(b) Determine whether the series Z ay, converges or diverges. Justify your answer.
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4. (5 points) Find the sum of the following series exactly. Z ::39 ’F’ SMg(
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5. (4 points) Find the Taylor series for the futrefion f(z) = e3® centered at the point a = —1. Give your
answer in summation notation. — ‘};( m‘) -3
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6. (7 points)
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(a) Determine whether the improper integral / ze " d converges §r diverges. Evaluate it if it
1
is convergent.
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Use the integral test, and your answer from (a), determine whether ne~™ converges or
(b) g y &

n=1
diverges. You must explicitly verify that the integral test applies to this series. No credit will be
given if another test is used.
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7. (3 points) Consider the series Z L= = —_——_—_— . e =

(a) Find s4. No need to simplify.
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8. (8 points) Determine whether the following series converge or diverge. You must clearly explain
your reasoning.
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9. (7 points) Find the center, radius of convergence, and the interval of convergence of the following
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10. (8 points) Let R be the region bounded by y = e and y = 0,0 < = < 1.
(a) Sketch the region and find the area of R.
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(b) Find the centroid of the the region R.
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11. (10 points) Consider x =t+2Int, y=1t—Int. } GYJ‘D \[a,‘\d (GIY ‘k >0

(a) Find and simplify Z—Z
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(b) Determine the location of any horizontal tangents. If none exist, explain why.
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(d) Determine the values of ¢ for which the curve is concave up.
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12. (10 points) Consider the curve r = 2sin(30). M rz"

(a) Sketch the curve r = 2sin(36).

(b) Find the area enclosed by one petal.

Y4
A=L§ " (asncaa) A0
=2 S:V?‘ Q)"hz(w\m A
S)E@@) 6}3

= gf”‘ |~ cose)48 = [0~ o

:@&( o

(c) Set up, but do not solve, an integral that gives the length of the polar curve traced out once.
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13. (3 points) Consider the curve defined by the parametric equations = =e

(a) Graph the curve and indicate with an arrow the direction in which the curve is traced as ¢ in-
creases and (b) eliminate the parameter to find a Cartesian equation of the curve. [Make sure to

specify any restriction on the variables.]
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