Your Name
Signature (you agree to complete honestly)
SOLUTIOWS
Student ID \#

Start Time

End Time

Page	Total Points	Score
2	10	
3	10	
4	11	
5	13	
6	10	
7	8	
8	7	
9	10	
10	3	
11	100	
12	Total	

- You will have 2.5 hours to complete the exam.
- This test is closed book and you may not use a calculator.
- You may use one side of a single piece of paper ($81 / 2 \mathrm{in}$. x 11 in .) of handwritten notes.
- In order to receive full credit (or partial credit in the case of incorrect solutions), you must show your work. Please write out your computations on the exam paper.
- Simplify all obvious expressions.
- PLACE A BOX AROUND YOUR FINAL ANSWER to each question where appropriate.

1. (20 points) Evaluate the following integrals.
(a) $\int_{0}^{\pi / 4} \sec ^{4} x \tan ^{2} x d x$

$$
=\int_{0}^{\pi / 4} \underbrace{\sec ^{2} x}_{1+\tan ^{2} x} \tan ^{2} x \sec ^{2} x d x
$$

$$
=\int_{0}^{\pi / 4}\left(1+\tan ^{2} x\right) \tan ^{2} x \sec ^{2} x d x
$$

$$
=\int_{0}^{1}\left(1+u^{2}\right) u^{2} d u
$$

$$
\Leftarrow\left\{\begin{array}{l}
u=\tan x \\
d u=\sec ^{2} x d x
\end{array}\right.
$$

$$
=\left[\frac{u^{3}}{3}+\frac{u^{5}}{5}\right]_{0}^{1}=\frac{1}{3}+\frac{1}{5}=\frac{8}{15}
$$

(b) $\int \arctan (2 x) d x$

$$
\longleftarrow \begin{cases}u=\arctan (2 x) & v=x \\ d u=\frac{1}{1+(2 x)^{2}} \cdot 2^{2 x}=\frac{2}{1+4 x^{2}} d x & d v=d x\end{cases}
$$

$$
=x \arctan (2 x)-\int \frac{2 x}{1+4 x^{2}} d x
$$

$$
=x \arctan (2 x)-\int \frac{\frac{1}{4} d w}{w} \in\left\{\begin{array}{l}
w=1+4 x^{2} \\
d w=8 x d x \\
\frac{1}{4} d w=2 x d x
\end{array}\right.
$$

$$
=x \arctan (2 x)-\frac{1}{4} \ln |w|+c
$$

$=x \arctan (2 x)-\frac{1}{4} \ln \left(1+4 x^{2}\right)+c$
(c) $\int \frac{4 x}{\left(x^{2}+4\right)(x-2)} d x$

$$
\begin{aligned}
& \begin{aligned}
\frac{4 x}{\left(x^{2}+4\right)(x-2)} & =\frac{A x+B}{x^{2}+4}+\frac{C}{x-2} \\
0 x^{2}+4 x+0 & =(A x+B)(x-2)+C\left(x^{2}+4\right) \\
& =(A+C) x^{2}+(-2 A+B) x+(-2 B+4 C)
\end{aligned} \\
& \left.\begin{array}{rl}
A+C=0 \\
-2 A+B=4 \\
-2 B+4 C=0 & \}
\end{array} \begin{array}{l}
2 C+B=4 \\
2 C-B=0
\end{array}\right\} 4 C=4 \Rightarrow C=1, A=-1, \quad B=2 \\
& \int \cdots d x=\int \frac{-x}{x^{2}+4}+\frac{2}{x^{2}+4}+\frac{1}{x-2} d x=-\frac{1}{2} \ln \left(x^{2}+4\right) \\
& \text { (d) } \int \frac{1}{x^{2} \sqrt{x^{2}-9}} d x \\
& \left\{\begin{array}{l}
x=3 \sec \theta \quad \frac{x}{3} \sqrt{x^{2}-9} \\
d x=3 \sec \theta \tan \theta d \theta
\end{array}\right. \\
& +\arctan (x / 4) \\
& +\ln |x-2|+c \\
& \sec ^{2} \theta-1=\tan ^{2} \theta \\
& =\int \frac{3 \sec \theta \tan \theta d \theta}{3^{2} \sec ^{2} \theta \sqrt{9 \sec ^{2} \theta-9}}=\int \frac{2 \sec \theta \tan \theta}{3^{2} \sec ^{2} \theta \cdot 3 \tan \theta} d \theta \\
& =\frac{1}{3^{2}} \int \cos \theta d \theta=\frac{1}{9} \sin \theta+c=\frac{1}{9} \frac{\sqrt{x^{2}-9}}{x}+c
\end{aligned}
$$

2. (11 points) Let R be the region bounded by the graphs of $f(x)=2 x-1, \quad g(x)=(x-2)^{2}$.
(a) Graph the region and then se up, but do not solve, an integral that gives the area of R.

$$
\begin{aligned}
& 2 x-1=(x-2)^{2} \\
& 2 x-1=x^{2}-4 x+4 \\
& x^{2}-6 x+5=0 \quad A=\int_{1}^{5}(2 x-1) \\
& (x-1)(x-5)=0 \quad(x-2)^{2} d x \\
& x=1,5
\end{aligned}
$$

(b) Set up, but do not solve, an integral that finds the volume of the solid when R is rotated about the y-axis.
Shells:

(c) Set up, but do not solve, an integral that finds the volume of the solid when R is rotated about the line $y=-1$.
washers:

$$
V=\int_{1}^{5} \pi\left((2 x-1+1)^{2}-\left((x-2)^{2}+1\right)^{2}\right) d x
$$

(d) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square whose sides are the length of the base in the region R. Set up, but do not solve, an integral that gives the volume of this solid.

$$
\left.V=\int_{1}^{5}(2 x-1)-(x-2)^{2}\right)^{2} d x
$$

3. (4 points) Let $a_{n}=\sin \left(\frac{n-\pi n^{2}}{2 n^{2}+3}\right)$.
(a) Determine whether the sequence a_{n} converges. If it is convergent determine what it converges

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sin \left(\frac{n-\pi n^{2}}{2 n^{2}+3}\right)=\sin \left(\lim _{n \rightarrow \infty} \frac{-\pi n^{2}+n}{2 n^{2}+3}\right) & =\sin \left(-\frac{\pi}{2}\right) \\
& =-1
\end{aligned}
$$

(b) Determine whether the series $\sum_{n=1}^{\infty} a_{n}$ converges or diverges. Justify your answer. by dwigence test, this series drags
4. (5 points) Find the sum of the following series exactly: $\quad t=3 e^{x}$ for some e_{x}
a) $\sum_{n=1}^{\infty}(-2)^{n 2^{n-2 n+1}} \quad$ geometric

$$
\begin{aligned}
& =(-2) 2^{-1}+(-2)^{2} 2^{-3}+(-2)^{3} 2^{-5}+\cdots \\
& =-1+\frac{1}{2}-\frac{1}{2^{2}}+\cdots \\
& a=-1, r=-1 / 2 \cdot \\
& \quad \sum \cdots=\frac{-1}{1+\frac{1}{2}}=-\frac{2}{3}
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
& \sum_{n=0}^{\infty} \frac{3(-1)^{n} 2^{n}}{n!} \\
&=3 \sum_{n=0}^{\infty} \frac{(-2)^{n}}{n!} \\
&=3 e^{-2}=\frac{3}{e^{2}}
\end{aligned}
$$

5. (4 points) Find the Taylor series for the futon $f(x)=e^{3 x}$ centered at the point $a=-1$. Give your

6. (7 points)
(a) Determine whether the improper integral $\int_{1}^{\infty} x e^{-x^{2}}$ do converges r diverges. Evaluate it if it is convergent.
 $\begin{aligned} & \int \cdots d x=\lim _{t \rightarrow \infty} \int_{1}^{t} x e^{-x^{2}} d x<\left[\begin{array}{l}u=x^{2} \\ \frac{d u}{2}=x d x\end{array}\right. \\ &=\lim _{t \rightarrow \infty} \int_{1}^{t^{2}} e^{-u} \frac{d u}{2}=\frac{1}{2} \lim _{t \rightarrow \infty}\left[-e^{-u}\right]_{1}^{t^{2}}\end{aligned}$

(b) Use the integral test, and your answer from (a), determine whether $\sum_{n=1}^{\infty} n e^{-n^{2}}$ converges or diverges. You must explicitly verify that the integral test applies to this series. No credit will be given if another test is used.

$$
\left.\begin{array}{l}
f(x)=x e^{-x^{2}} \geq 0 \\
\uparrow \text { decreasing on }[1, \infty) \\
f(n)=a_{n}=n e^{-n^{2}}
\end{array}\right\} \begin{aligned}
& \text { integral fest } \\
& \text { shows } \\
& \sum_{n=1}^{\infty} n e^{-n^{2}}
\end{aligned}
$$

7. (3 points) Consider the series $\left.\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}=-\frac{1}{1}+\frac{1}{4}-\frac{1}{9}+\cdots\right\} b_{n}=\frac{1}{n^{2}}$
(a) Find s_{4}. No need to simplify.

$$
s_{4}=-1+\frac{1}{4}-\frac{1}{9}+\frac{1}{16}
$$

(b) At most, how far is this from the actual sum? I.e., what is the |error|?

$$
\begin{aligned}
\mid \text { era } \mid= & \left(R_{4} \left\lvert\, \leq b_{5}=\frac{1}{5^{2}}=\frac{1}{25}\right.\right. \\
& T_{4}=\sum_{n=1}^{\infty} \frac{\left(E 1^{n} n^{n}\right.}{n^{2}}-S_{4}
\end{aligned}
$$

8. (8 points) Determine whether the following series converge or diverge. You must clearly explain your reasoning.
(a) $\sum_{n=1}^{\infty} \frac{\sqrt{n^{2}+3}}{4+2 n^{3}}$
limit comparison test:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\frac{\sqrt{n^{2}+3}}{4+2 n^{3}}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{2} \sqrt{n^{2}+3}}{2 n^{3}+4}=\lim _{n \rightarrow \infty} \frac{\sqrt{n^{6}+3 n^{4}}}{2 n^{3}+4} \\
=\lim _{n \rightarrow \infty} \frac{\sqrt{1+3 / n^{2}}}{2+4 / n^{3}}=\frac{1}{2} \neq 0, \infty
\end{gathered}
$$

\therefore both converge
(b) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2}{n+3}$

$$
\left.\begin{array}{l}
b_{n}=\frac{2}{n+3} \geqslant 0 \\
b_{n} \text { decreases } \\
\lim _{n \rightarrow \infty} b_{n}=0
\end{array}\right\} \begin{aligned}
& \text { AST shans } \\
& \text { converge }
\end{aligned}
$$

9. (7 points) Find the center, radius of convergence, and the interval of convergence of the following
(a) $\sum_{n=1}^{\infty} \frac{(2 x+3)^{n}}{(n+1)^{n}} \quad \rho=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{|2 x+3|^{n}}{(n+1)^{n}}}=\lim _{n \rightarrow \infty} \frac{|2 x+3|}{n+1}=0$
so

$$
\begin{aligned}
& I=(-\infty, \infty) \\
& R=\infty
\end{aligned}
$$

[Center meaningless]

$$
\begin{aligned}
& \text { (b) } \sum_{n=1}^{\infty} \frac{(-1)^{n}(x-2)^{n}}{3^{n} \cdot n^{2}} \quad \rho=\lim _{n \rightarrow \infty} \sqrt[n]{\frac{|x-2|^{n}}{3^{n} n^{2}}}=\lim _{n \rightarrow \infty} \frac{|x-2|}{3(\sqrt[n]{n})^{2}} \\
& =\frac{|x-2|}{3}<1 \Leftrightarrow-3<x-2<3 \Leftrightarrow-1<x<5 \\
& \underline{x=-1 ;} \sum_{n=1}^{\infty} \frac{(-1)^{n}(-3)^{n}}{3^{n} n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \text { converge } p=2 \\
& \sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{n}}{3^{n} n^{2}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \text { converges AST } \\
& R=3 \\
& I=[-1,5]
\end{aligned}
$$

10. (8 points) Let \mathcal{R} be the region bounded by $y=e^{x}$ and $y=0,0 \leq x \leq 1$. (a) Sketch the region and find the area of \mathcal{R}.

$$
\begin{aligned}
A & \left.=\int_{0}^{1} e^{x}-0 d x=e^{x}\right]_{0}^{1} \\
& =e-1
\end{aligned}
$$

(b) Find the centroid of the the region \mathcal{R}.

$$
m=\int_{0}^{1} e^{x}-0 d x=e-1
$$

density $\rho=1$ ask this

$$
\left.\begin{array}{rl}
m_{y} & \left.=\int_{0}^{1} x e^{x} d x=x e^{x}\right]_{0}^{1}-\int_{0}^{1} e^{x} d x \\
& =e-\left(e^{u}-1\right)=1 \\
d u=x=x=1 \\
d v=e^{x} x
\end{array}\right)
$$

11. (10 points) Consider $x=t+2 \ln t, \quad y=t-\ln t$. $\}$ only valid for $t>0$
(a) Find and simplify $\frac{d y}{d x}$.

$$
\frac{d y}{d x}=\frac{1-\frac{1}{t}}{1+\frac{2}{t}}=\frac{t-1}{t+2}
$$

(b) Determine the location of any horizontal tangents. If none exist, explain why.

(c) Find and simplify $\frac{d^{2} y}{d x^{2}}$.

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{d x d t}=\frac{\left(\frac{t-1}{t+2}\right)^{\prime}}{1+\frac{2}{t}}=\frac{\frac{1(t+2)-(t-1) \cdot 1}{(t+2)^{2}}}{1+\frac{2}{t}}
$$

$$
=\frac{t+2-t+1}{(t+2)^{2}} \frac{t}{t+2}=\frac{3 t}{(t+2)^{3}}
$$

(d) Determine the values of t for which the curve is concave up.

$$
\frac{d^{2} y}{d x^{2}}>0 \text { for all } t>0
$$

12. (10 points) Consider the curve $r=2 \sin (3 \theta)$.
(a) Sketch the curve $r=2 \sin (3 \theta)$.

(b) Find the area enclosed by one petal.

$$
\begin{aligned}
A & =\frac{1}{2} \int_{0}^{\pi / 3}(2 \sin (3 \theta))^{2} d \theta \\
& =2 \int_{0}^{\pi / 3} \sin ^{2}(30) d \theta \\
& =\int_{0}^{\pi / 3} 1-\cos (6 \theta) d \theta=\left[\theta-\frac{\sin (6 \theta)}{6}\right]_{0}^{\pi / 3} \\
& =\frac{\pi}{3} \approx 1
\end{aligned}
$$

(c) Set up, but do not solve, an integral that gives the length of the polar curve traced out once.

$$
\begin{aligned}
L & =\int_{0}^{\pi} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \quad\left(\frac{d r}{\theta \theta}=6 \cos (3 \theta)\right. \\
& =\int_{0}^{\pi} \sqrt{4 \sin ^{2}(3 \theta)+36 \cos ^{2}(3 \theta)} d \theta
\end{aligned}
$$

13. (3 points) Consider the curve defined by the parametric equations $x=e^{t}, y=2 e^{-t}$.
(a) Graph the curve and indicate with an arrow the direction in which the curve is traced as t increases and (b) eliminate the parameter to find a Cartesian equation of the curve. [Make sure to specify any restriction on the variables.]

$$
\begin{aligned}
& x=e^{t} \\
& y=\frac{2}{e^{t}}=\frac{2}{x}
\end{aligned}
$$

Extra Credit (3 points) Find the length of the polar cu re $r=e^{-\theta}$ for $\theta \geq 0$.

$$
L=\int_{0}^{\infty} \sqrt{e^{-2 \theta}+e^{-2 \theta}} d \theta
$$

$$
=\int_{0}^{\infty} \sqrt{2 e^{-2 \theta}} d \theta
$$

$$
=\sqrt{2} \int_{0}^{\infty} e^{-\theta} d \theta=\sqrt{2} \lim _{t \rightarrow \infty}\left[-e^{-\theta}\right]_{0}^{t}
$$

$$
=\sqrt{2} \lim _{t \rightarrow \infty}\left[1-e^{-t}\right]=\sqrt{2} \cdot 1=\sqrt{2}
$$

