Name:

Midterm Exam 2
No book, electronics, calculator, or internet access. Only "Summary of Convergence Tests" notes allowed. 100 points possible. 70 minutes.

1. (5 pts) Verify that $y=e^{2 x^{2}}$ is a solution to the differential equation $y^{\prime}-4 x y=0$.

$$
\begin{aligned}
& y^{\prime}=e^{2 x^{2}} \cdot 4 x \\
& y^{\prime}-4 x y=e^{2 x^{2}} \cdot 4 x-4 x \cdot e^{2 x^{2}}=0
\end{aligned}
$$

2. Compute and simplify the improper integrals, or show they diverge. Use correct limit notation.
(a) (s) $(x, t) \int_{0}^{1} \frac{4 t}{x \rightarrow-} \lim _{t \rightarrow 0^{+}} \int_{t}^{1} x^{-3} d x=\lim _{t \rightarrow \infty}\left[\frac{-x^{-2}}{2}\right]_{t}^{1}$

$$
=\lim _{t \rightarrow 0^{+}}\left[-\frac{1}{2}+\frac{1}{2 t^{2}}\right]=+\infty \quad s_{0} \text { liverg2 }
$$

$$
=\lim _{t \rightarrow \infty}\left[-e^{-t^{2}}+e^{-1}\right]=0+e^{-1}=\left(\frac{1}{e}\right.
$$

3. Do the following series converge or diverge? Show your work, including naming any test you use.
(a) (5 pts) $\quad \sum_{n=1}^{\infty} \frac{n+1}{n^{2}}$
$\frac{n+1}{n^{2}} \geqslant \frac{n}{n^{2}}=\frac{1}{n}$ and $\sum_{n=1}^{\infty} \frac{1}{n} \quad \begin{aligned} & \text { (harmaic) }\end{aligned}$
So diverges by comparis on test (or limit companion test, or integral test)
(b) (5pts) $\quad \sum_{n=1}^{\infty} \frac{2 n+1}{5 n-1}$

$$
\lim _{n \rightarrow \infty} \frac{2 n+1}{5 n-1} \stackrel{L H}{=} \frac{2}{5} \neq 0
$$

diverges by divergence test
(c) (5 pts) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{2 n}}$

$$
b_{n}=\frac{1}{\sqrt{2 n}} \cdot \lim _{\substack{n \rightarrow \infty \\ b_{n} \\ b_{n} \\ \stackrel{\frac{1}{\infty}}{=}}}^{\substack{\text { decreases }}}
$$

So converts by AST
(d) (5 pts)

$$
\begin{aligned}
& { }_{5 p(t)} \sum_{n=0}^{\infty} \frac{2^{n} n!}{(n+2)!}=\sum_{n=0}^{\infty} \frac{2^{n} n!}{(n+2)(n+1) \cdot n!}=\sum_{n=0}^{\infty} \frac{2^{n}}{(n+2)(n+1)} \\
& \lim _{n \rightarrow \infty} \frac{2^{n}}{(n+2)(n+1)} \stackrel{(1 H}{=} \lim _{n \rightarrow \infty} \frac{(\ln 2)^{2} 2^{n}}{2}=+\infty
\end{aligned}
$$

diverss by divergance test
(or ratio test : $\rho=\cdots=2>1$
\therefore divenge
(e) (5pts) $\quad \sum_{n=0}^{\infty}\left(\frac{n+3}{2 n-1}\right)^{n}$

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{n+3}{2 n-1}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{n+3}{2 n-1} \\
& =\frac{1}{2}<1
\end{aligned}
$$

convengs by root test
4. (5 pts) Does the following series converge or diverge? Show your work, including naming any test you use. (Hint. Previous problem? Or another test?)

$$
\sum_{n=1}^{\infty} \frac{2 n}{e^{\left(n^{2}\right)}}
$$

integral test using $2(b)$:

so

Cor
ratiotest or

5. (5 pts) Compute and simplify the value of the infinite series $\sum_{n=1}^{\infty}\left(\frac{2}{5}\right)^{n+1}$. geometric scenes

$$
=\left(\frac{2}{5}\right)^{2}+\left(\frac{2}{5}\right)^{3}+\left(\frac{2}{5}\right)^{4}+\cdots
$$

$$
\text { So } \quad a=\left(\frac{2}{5}\right)^{2}=\frac{4}{25}, \quad r=\frac{2}{5}<1
$$

So: $\sum_{n=1}^{\infty}\left(\frac{2}{5}\right)^{n+1}=\frac{4 / 25}{1-2 / 5}=\frac{\frac{4}{25}}{\frac{3}{5}}=\frac{4}{25} \frac{8}{3}$

6. Consider the infinite series $1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\frac{1}{25}-\frac{1}{36}+\ldots$
(a) (5 pts) Write the series using sigma (\sum) notation.

(b) (5 pts) Compute and simplify S_{3}, the partial sum of the first three terms.

$$
S_{3}=1-\frac{1}{4}+\frac{1}{9}=\frac{36-9+4}{36}=\frac{31}{36}
$$

(c) (5 pts) Does this series converge absolutely, conditionally, or neither (diverge)? Show your work, identify any test(s) used, and circle one answer.

CONVERGES CONDITIONALLY

DIVERGES
7. Use the well known geometric series $\frac{1}{1-r}=\sum_{n=0}^{\infty} r^{n}$ to find power series representations for the following functions. Show your work.
(a) $(5 p t s) \quad \frac{1}{1+x^{3}} \quad N=-x^{3}$

8. (7 pts) If $f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$, find a power series representation for $f^{\prime}(5 x)$

$$
\begin{aligned}
f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{n x^{n-1}}{\sqrt{n}}=\sum_{n=1}^{\infty} \sqrt{n} x^{n-1} \\
\text {, either (s fine } \\
f^{\prime}(x)=\sum_{n=1}^{\infty} \sqrt{n}(5 x)^{n-1}=\sum_{m=0}^{\infty} \sqrt{m+1}(5 x)^{m}
\end{aligned}
$$

9. Find the interval of convergence of the following power series.
(a) (spits) $\sum_{n=1}^{\infty} \frac{2^{n} x^{n}}{n!}$ ratio test

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty} \frac{\frac{\left.2^{n+1} \mid x\right)^{n+1}}{(n+1)!}}{\frac{\left.2^{n} \mid x\right)^{n}}{n!}}=\lim _{n \rightarrow \infty} \frac{\left.2^{\mid x+1}|x|^{x+1}\right)}{(n+1)!+2^{n} x^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{2|x|}{(n+1)}=0<1
\end{aligned}
$$

$\therefore I=(-\infty, \infty)$ is int. of conv.
(b) (8pts) $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n 3^{n}}$ ratio test

$$
\rho=\lim _{n \rightarrow \infty} \frac{\frac{|x-1|^{n+1}}{(n+1) 3^{n+1}}}{\frac{|x-1|^{n}}{n 3^{n}}}=\lim _{n \rightarrow \infty} \frac{\mid x-1)^{1(x+1} n x}{(n+1)}<3 \times\left(x-\left.1\right|^{n}\right.
$$

(or root test)

$$
=\frac{|x-1|}{3} \lim _{n \rightarrow \infty} \frac{n}{n+1} \stackrel{\text { L'H }}{=} \frac{|x-1|}{3} \cdot 1=\frac{|x-1|}{3}<1
$$

$$
\left.\begin{array}{l}
\Leftrightarrow-3<x-1<3 \Leftrightarrow-2<x<4 \\
\underline{x=-2}: \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \text { converge AST }
\end{array}\right\}
$$

$$
I=[-2,4]
$$

is int. of cav.

Extra Credit. (3 pts) The function $f(x)=\arctan (x)$ can be represented by the power series

$$
\arctan (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}
$$

Suppose I choose $x=1 / \sqrt{3}$ and compute the partial sum $S_{20}=\sum_{n=0}^{20} \frac{(-1)^{n}(1 / \sqrt{3})^{2 n+1}}{2 n+1}$ as an approximaton to $\arctan (1 / \sqrt{3})=\frac{\pi}{6}$.

How accurate is this approximation? Use a known fact about remainders of alternating series.

$$
\begin{aligned}
& \frac{\pi}{6}=\arctan \left(\frac{1}{\sqrt{3}}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}(1 / \sqrt{3})^{2 n+1}}{2 n+1}=\int_{\substack{(1) \\
\left|R_{20}\right|=\left|S-S_{20}\right|^{2 n}} b_{21}=\frac{(1 / \sqrt{3})^{43}}{43}=\frac{1}{43 \cdot 3^{43 / 2}}}^{=\frac{1}{43\left(3^{21.5}\right)}} \begin{array}{r}
\text { very sale! }
\end{array}
\end{aligned}
$$

