Midterm Exam 1
No book, notes, electronics, calculator, or internet access. 100 points possible. 70 minutes maximum.

1. (7pts) Compute the area between the curves $y=x^{2}$ and $y=\sqrt{x}$ on the interval $0 \leq x \leq 1$. (Hint. Be careful about which curve is above the other.)

$$
\begin{aligned}
A & =\int_{0}^{1} \sqrt{x}-x^{2} d x \\
& =\left[\frac{2}{3} x^{3 / 2}-\frac{x^{3}}{3}\right]_{0}^{1} \\
& =\frac{2}{3}-\frac{1}{3}=\frac{1}{3}
\end{aligned}
$$

2. (6 pts) Completely set up, but do not evaluate, a definite integral for the length of the curve $y=\sqrt{x}$ on the interval $x=1$ to $x=4$.

$$
\begin{aligned}
& f(x)=x^{1 / 2} \\
& f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}
\end{aligned}
$$

3. (a) $(4$ pts $)$ Sketch the region bounded by the curves $y=e^{x}, x=0$ and $y=e$. (Hint. Double-check this part!)

(b) (4 pts) Use the slicing (disks/washers) method to completely set up, but not evaluate, a definite integral for the volume of the solid of revolution formed by rotating the region in part (a) around the y-axis.

(c) (4 pts) Use the shells method to completely set up, but not evaluate, a definite integral for the volume of the same solid of revolution as in part (b).

$$
V=\int_{0}^{1} 2 \pi x \cdot\left(e-e^{x}\right) \cdot d x \text { (shells) }
$$

(d) (4 pts) Evaluate one of the integrals in parts (b) or (c) to find the volume.

$$
\text { from (c): } \begin{aligned}
& \quad V=2 \pi e \int_{0}^{1} x d x-2 \pi \int_{0}^{1} x e^{x} d x \\
&=\left.2 \pi e\left[\frac{x^{2}}{2}\right]_{0}^{1}-2 \pi\left(x e^{x}\right]_{0}^{1}-\int_{0}^{1} e^{x} d x\right) \\
&=2 \pi e \cdot \frac{1}{2}-2 \pi\left(e-\left[e^{x}\right]_{0}^{1}\right)=\pi e-2 \pi(e-e+1) \\
&=\pi(e-2))
\end{aligned}
$$

4. (6 pts) Completely set up, but do not evaluate, a definite integral for the surface area of the surface created when the curve $y=x^{2}$ on the interval $x=0$ to $x=1$ is rotated around the x-axis.

5. It takes a force of 4 Newtons to hold a spring 3 centimeters from its equilibrium.
(a) (3 pts) What is the spring constant k in Hooke's Law (ie. $F=k x$)?

$$
(\leftarrow \text { either })
$$

(b) (6 pts) How much work is done to compress the spring 6 centimeters from its equilibrium?

Simplify your answer and include units.

$$
W=\int_{0}^{6} F(x) d x=\int_{0}^{6} k x d x
$$

or:

$$
\begin{aligned}
& 4=k \cdot 3 \\
& k=\frac{4}{3} \frac{\mathrm{~N}}{\mathrm{~cm}}=\frac{400}{3} \frac{\mathrm{~N}}{\mathrm{~m}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.=k \cdot \frac{x^{2}}{2}\right]_{0}^{6}=\frac{4}{3} \cdot \frac{6^{2}}{2}=24 \\
& \left.\int_{0}^{0.06} F(x) d x=k \frac{x^{2}}{2}\right]_{0}^{0.06}
\end{aligned}
$$

6. Evaluate and simplify the following indefinite and definite integrals.

(c) (6 pts) $\int \cos (7 t) \sin (7 t) d t=$ $\int u \frac{d u}{7}$
$(7 t)$
$\cos (7 t) \cdot 7 d t$ $\left[\begin{array}{l}u=\sin (7 t) \\ d u=\cos (7 t) \cdot 7 d t \\ \frac{d u}{7}=\cos (7 t) d t\end{array}\right]$

(d) (6pts) $\int_{0}^{\pi / 2} \sin ^{3} x d x=\int_{0}^{\pi / 2} \sin ^{2} x \cdot \sin x d x$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2}\left(1-\cos ^{2} x\right) \sin x d x \\
& =\int_{1}^{0}\left(1-u^{2}\right)(-d u) \\
& =\int_{0}^{1}\left(1-u^{2}\right) d u=\left[\begin{array}{l}
u=\cos x \\
d u=-\sin x d x \\
-d u=\sin x d x
\end{array}\right] \\
& \left.=1-\frac{1}{3}=\frac{u^{3}}{3}\right]_{0}^{1}
\end{aligned}
$$

${ }^{(\mathrm{e})}(6 p t s) \quad \int x^{2} \sin x d x=x^{2}(-\cos x)-\int(-\cos x) \cdot 2 x d x$

$$
\left.\left.\begin{array}{rl}
& {\left[\begin{array}{cc}
u=x^{2} & v=-\cos x \\
d u=2 x d x & d v=\sin x d x
\end{array}\right]} \\
=-x^{2} \cos x+2 \int x \cos x d x \\
=-x^{2} \cos x+2\left(x \sin x-\int \sin x d x\right) \\
=-x^{2} \cos x+2 x \sin x-2(-\cos x)+c \quad v=\sin x \\
d u=d x d v=\cos x d x
\end{array}\right]\right\}
$$

6
(f) (6pts) $\left.\int \sec x d x=\int \sec x \cdot \frac{\sec x+\tan x}{\sec x+\tan x} d x\right\}$ the trick

$$
\begin{aligned}
& =\int \frac{\sec x \tan x+\sec ^{2} x}{\sec x+\tan x} d x \\
& =\int \frac{d u}{u}
\end{aligned}
$$

$$
=\ln |u|+c=\ln |\sec x+\tan x|+c
$$

$\begin{aligned} &(\mathrm{g})(6 p t s) \quad \int \sin (7 x) \cos (3 x) d x=\int \frac{1}{2} \sin ((7-3) x)+\frac{1}{2} \sin ((7+3) x) d x \\ & \uparrow\end{aligned}$
$\left[\begin{array}{c}\text { from last } \\ \text { page }\end{array}\right]$

$$
\begin{aligned}
& =\frac{1}{2} \int \sin (4 x)+\sin (10 x) d x=\frac{1}{2}\left(-\frac{\cos (4 x)}{4}-\frac{\cos (10 x)}{10}\right)+c \\
& =-\frac{1}{8} \cos (4 x)-\frac{1}{20} \cos (10 x)+c
\end{aligned}
$$

7. (8 pts) Evaluate and simplify the indefinite integral:

8. (8 pts) Evaluate and fully simplify the indefinite integral.
(Hint. $(\tan \theta)^{\prime}=\sec ^{2} \theta$ and $(\cot \theta)^{\prime}=-\csc ^{2} \theta$.)

Extra Credit. (3 pts) Compute and simplify the integral

$$
\left.\begin{array}{l}
\underbrace{\int \sec ^{3} \theta \theta=}_{=I}=\int \sec \theta \cdot \sec ^{2} \theta d \theta \\
=\sec \theta \tan \theta-\int \sec \theta \quad v=\tan \theta \\
d x=\sec \theta-\tan \theta \sec \theta \tan \theta d v=\sec ^{2} \theta d \theta
\end{array}\right] \quad \begin{aligned}
& =\sec \theta \tan \theta-\int \tan ^{2} \theta \sec \theta d \theta \\
& =\sec \theta \tan \theta-\int\left(\sec ^{2} \theta-1\right) \sec \theta d \theta \\
& =\sec \theta \tan \theta+\int \sec \theta d \theta-\int \sec ^{3} \theta d \theta \\
& \left.=\sec \theta \tan \theta+\ln 1 \sec \theta+\tan \theta \mid-\int \sec ^{3} \theta d \theta\right) \\
& \text { So: } \quad \int \sec ^{3} \theta d \theta=\frac{1}{2}(\sec \theta \tan \theta+\ln \mid \sec \theta+\tan \theta)+c
\end{aligned}
$$

You may find the following trigonometric formulas useful. However, there are other trig. formulas, not listed here, which you should have in memory, or which you know how to derive from these.

$$
\begin{aligned}
\sin (\alpha \pm \beta) & =\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
\cos (\alpha \pm \beta) & =\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
\sin (a x) \sin (b x) & =\frac{1}{2} \cos ((a-b) x)-\frac{1}{2} \cos ((a+b) x) \\
\sin (a x) \cos (b x) & =\frac{1}{2} \sin ((a-b) x)+\frac{1}{2} \sin ((a+b) x) \\
\cos (a x) \cos (b x) & =\frac{1}{2} \cos ((a-b) x)+\frac{1}{2} \cos ((a+b) x)
\end{aligned}
$$

