Name: SOLUTIONS

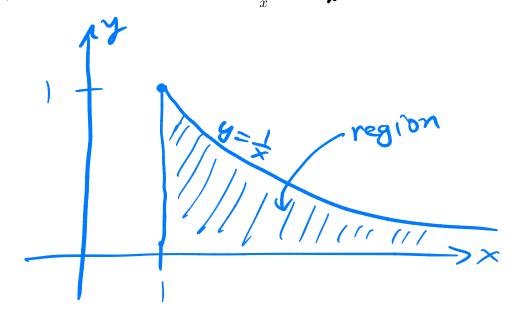
Math 252 Calculus 2 (Bueler)

Tuesday, 13 December 2022

Final Exam

No book, electronics, calculator, or internet access. 125 points possible. 125 minutes maximum. Allowed notes: 1/2 sheet of letter paper (i.e. half of 8.5×11 sheet), with anything written on both sides.

1. (a) (5 *pts*) Sketch the region bounded by $y = \frac{1}{x}$ and the **x**-axis, on the interval $1 \le x < +\infty$.



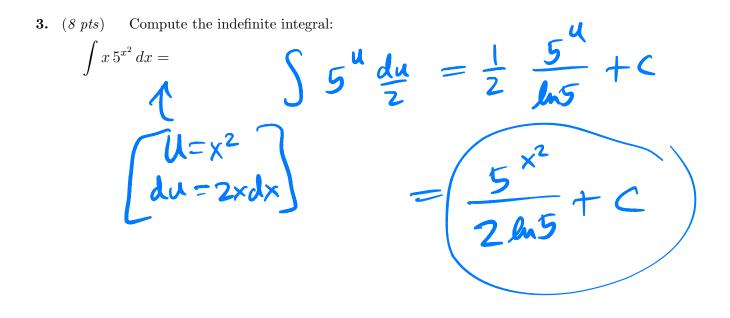
(b) $(8 \ pts)$ Compute the volume of the solid of revolution found by rotating the region in (a) around the *x*-axis, or show that it is infinite.

$$V = \int_{1}^{\infty} \pi y(x)^{2} dx = \pi \int_{1}^{\infty} \frac{dx}{x^{2}}$$

= $\pi \lim_{t \to \infty} \int_{1}^{t} x^{-2} dx = \pi \lim_{t \to \infty} \left[-x^{-1} \right]_{1}^{t}$
= $\pi \lim_{t \to \infty} \left(-\frac{1}{t} + 1 \right) = \pi (0+1) = \pi$
(converges)

2. (7 *pts*) Set up, but **do not evaluate**, an integral for the arclength of the parametric curve defined by $x(t) = e^t$, $y(t) = \ln t$ on the interval $1 \le t \le 10$.

$$L = \int_{1}^{10} \sqrt{(e^t)^2 + (\frac{1}{t})^2} dt$$
$$\left(\frac{dx}{dt} = e^t\right) \frac{dy}{dt} = \frac{1}{t}$$



4. Evaluate the integrals:
(a) (6 pts)
$$\int_{0}^{3} x e^{-x} dx = x (-e^{-x}) \int_{0}^{3} - \int_{0}^{3} (-e^{-x}) dx$$

(by put: $u = x \quad v = -e^{-x}$
 $du = dx \quad dv = e^{-x} dx$
 $= - [xe^{-x}]_{0}^{3} + \int_{0}^{3} e^{-x} dx = - (3e^{-3} - 0) - [e^{-x}]_{0}^{3}$
 $= - 3e^{-3} - e^{-3} + e^{-0} = [-4e^{-3}]$

(b) (6 pts)
$$\int \frac{dx}{x(1+x)} = \int \frac{1}{x} - \frac{1}{1+x} dx$$
 portial function:

$$= (\ln|x| - \ln|x| + c)$$

$$= \ln \left|\frac{x}{1+x}\right| + c$$

5. Evaluate the indefinite integrals:

4

(a)
$$(6 \text{ pts}) \int \cos^2 \theta \sin^2 \theta \, d\theta = \frac{1}{4} \int (1 + \cos 2\theta) (1 - \cos 2\theta) \, d\theta$$

$$= \frac{1}{4} \int 1 - (\cos^2 (2\theta) \, d\theta) = \frac{1}{4} \int 1 - \frac{1}{2} (1 + \cos(4\theta)) \, d\theta$$

$$= \frac{1}{8} \int 1 - \cos (4\theta) \, d\theta = \frac{1}{8} \left[\theta - \frac{\sin(4\theta)}{4} \right] + c$$

$$= \left[\frac{\theta}{8} - \frac{\sin(4\theta)}{32} + c \right]$$

(b) (6 pts)
$$\int \frac{dz}{\sqrt{1+z^2}} = \int \frac{\sec^2 0 \, d0}{\sqrt{1+tm^2 0}} = \int \frac{\sec^2 0}{\sec 0} \, d0$$

$$\begin{bmatrix} 2 = tan0 \\ d2 = \sec^2 0 \end{bmatrix} = \frac{2 \text{ for stepping}}{\text{hore}}$$

$$= \int \sec 0 \, d0 = \ln|\sec 0 + \tan 0| + C$$

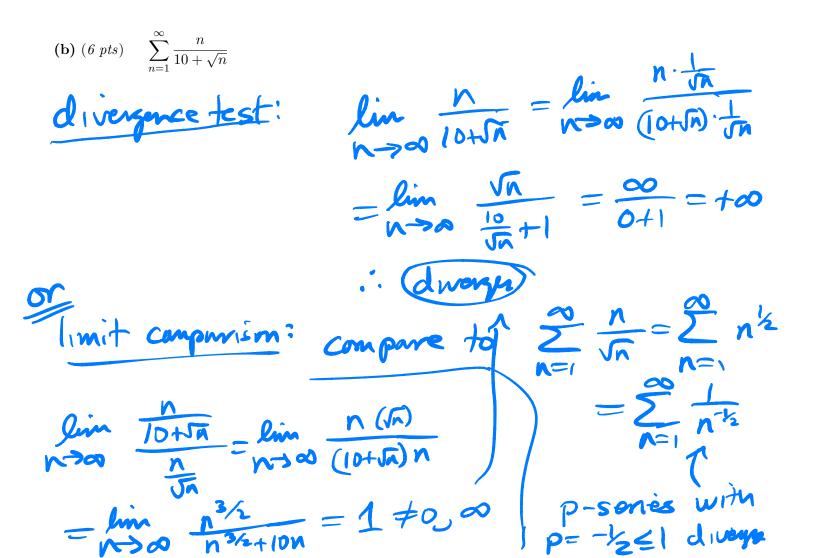
$$\begin{bmatrix} 1 \text{ from memory of "trick"} \end{bmatrix}$$

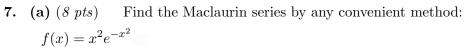
$$= \ln |\sqrt{1+2^2} + 2| + C$$

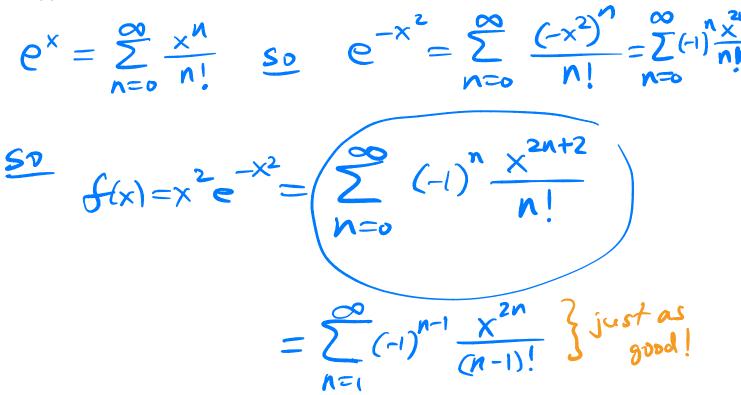
6. Determine whether the following series converge or diverge. Explain your reasoning and identify any test used.

(a)
$$(6 \ pts) \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+3}}$$

 $b_n = \frac{1}{\sqrt{n+3}} > 0$, b_n decreasing,
 $lim \ b_n = 0$
 $h \rightarrow \infty \ b_n = 0$
 $h \rightarrow \infty \ b_n = 0$







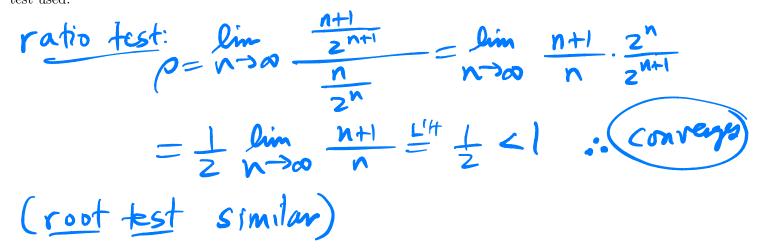
(b) (8 pts) Use the result in (a) to compute the following antiderivative $as a \rho_0 w$ serves:

$$\int x^{2}e^{-x^{2}} dx = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \int x^{2n+2} dx$$

$$= \left(\begin{array}{c} + & \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{x^{2n+3}}{2n+3} \\ & n=0 \end{array} \right)$$

$$= C + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n-1)!} \frac{x^{2n+1}}{2n+1} \int_{0}^{2} just as good$$

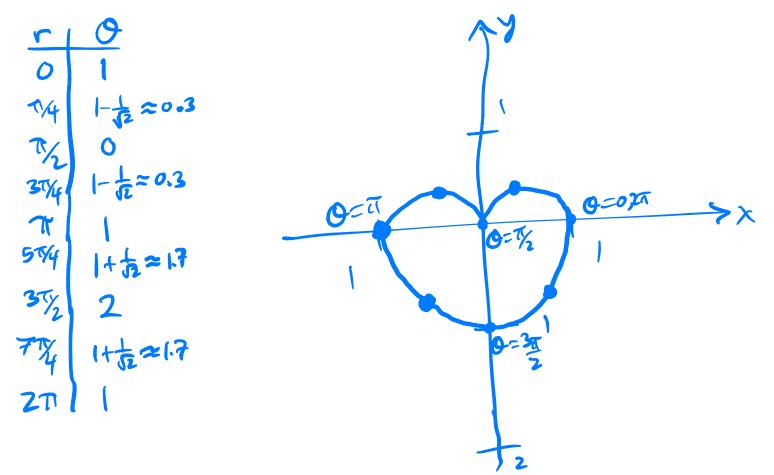
8. (a) (6 pts) Does the series $\sum_{n=1}^{\infty} \frac{n}{2^n}$ converge or diverge? Explain your reasoning and identify any test used.



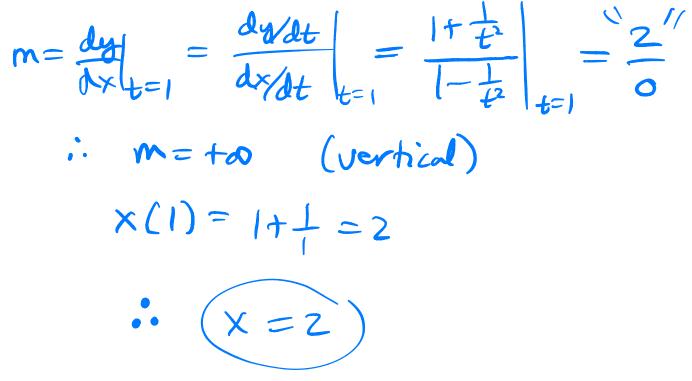
(b) $(5 \ pts)$ Compute and simplify S_3 for the series in part (a).

$$S_3 = \frac{1}{2!} + \frac{2}{2^2} + \frac{3}{2^3} = \frac{1}{2} + \frac{1}{2} + \frac{3}{8} = \frac{1}{8}$$

9. (6 pts) Make a careful and reasonably-large sketch of the cardiod $r = 1 - \sin \theta$. (Label the axes and give dimensions/values along the axes.)

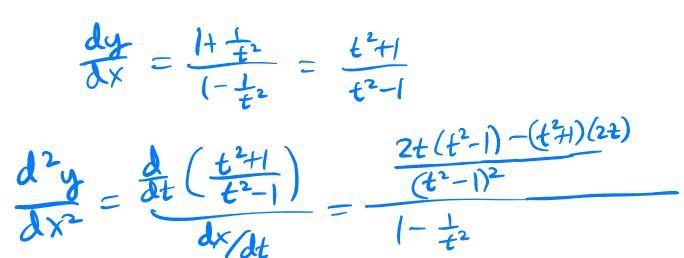


10. Consider the parametric curve x = t + 1/t, y = t - 1/t.
(a) (6 pts) Find the equation of the tangent line at t = 1.



(b) (6 *pts*) Compute the second derivative $\frac{d^2y}{dx^2}$.

(t - 1)



$$=\frac{2^{\pm}(t^{2}-(-t^{2}-t))}{(t^{2}-(-t^{2}-t))^{2}((-t^{2}-t))}=\frac{2^{\pm}(-2)}{(t^{2}-t^{2$$

11. (8 pts) Find the radius and interval of convergence of the power series:

$$\sum_{n=1}^{\infty} \frac{(x+5)^n}{n^2}$$

$$root + est: \qquad p = \lim_{n \to \infty} \frac{|x+5|}{(n/n)^2} = \frac{|x+5|}{1} = |x+5| < (1 + 1)^{n/2} = \frac{|x+5|}{1} < (1 + 1)^{n/2} = \frac{|x+5|}{1} = |x+5| < (1 + 1)^{n/2} = \frac{|x+5|}{1} = |x+5| < (1 + 1)^{n/2} = \frac{|x+5|}{1} < (1 + 1)^{n/2} = \frac{|x+5|}{1} = |x+5| < (1 + 1)^{n/2} = \frac{|x+5|}{1} < (1 + 1)^{n/2} = \frac{|x+5|}{1} < (1 + 1)^{n/2} = \frac{|x+5|}{1} = |x+5| < (1 + 1)^{n/2} = \frac{|x+5|}{1} < (1 + 1)^{n/2} =$$

Extra Credit. (3 pts) First, explain in terms of familiar Maclaurin series, why
$$\frac{1}{e} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$$
.
Second, how accurate is $S_9 = \sum_{n=0}^{9} \frac{(-1)^n}{n!}$ as an approximation to $1/e$? Write your bound on the error in the box below.
Note $e^{\chi} = \sum_{n=0}^{\infty} \frac{\chi^n}{n!}$. Substitute $\chi = -1$ fo
get $\frac{1}{e} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$. This series is alternative of $1/e^2$, $1/e^$

You may find the following **trigonometric formulas** useful. However, there are other trig. formulas, not listed here, which you should have in memory, or which can be derived from these.

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\sin(ax)\sin(bx) = \frac{1}{2}\cos((a-b)x) - \frac{1}{2}\cos((a+b)x)$$
$$\sin(ax)\cos(bx) = \frac{1}{2}\sin((a-b)x) + \frac{1}{2}\sin((a+b)x)$$
$$\cos(ax)\cos(bx) = \frac{1}{2}\cos((a-b)x) + \frac{1}{2}\cos((a+b)x)$$

EXTRA SPACE FOR ANSWERS

Summary	of	Convergence	Tests
---------	----	-------------	-------

Series or Test	Conclusions	Comments
Divergence Test For any series $\sum_{n=1}^{\infty} a_n$, evaluate $\lim_{n \to \infty} a_n$.	If $\lim_{n \to \infty} a_n = 0$, the test is inconclusive. If $\lim_{n \to \infty} a_n \neq 0$, the series diverges.	This test cannot prove convergence of a series.
Geometric Series $\sum_{n=1}^{\infty} ar^{n-1}$	If $ r < 1$, the series converges to a/(1 - r). If $ r \ge 1$, the series diverges.	Any geometric series can be reindexed to be written in the form $a + ar + ar^2 + \cdots$, where <i>a</i> is the initial term and <i>r</i> is the ratio.
<i>p</i>-Series $\sum_{n=1}^{\infty} \frac{1}{n^p}$	If $p > 1$, the series converges. If $p \le 1$, the series diverges.	For $p = 1$, we have the harmonic series $\sum_{n=1}^{\infty} 1/n$.
Comparison Test For $\sum_{n=1}^{\infty} a_n$ with nonnegative terms, compare with a known series $\sum_{n=1}^{\infty} b_n$.	If $a_n \le b_n$ for all $n \ge N$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. If $a_n \ge b_n$ for all $n \ge N$ and $\sum_{n=1}^{\infty} b_n$ diverges	Typically used for a series similar to a geometric or <i>p</i> -series. It can sometimes be difficult to find an appropriate series.
	and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.	
Limit Comparison Test For $\sum_{n=1}^{\infty} a_n$ with positive terms, compare with a series $\sum_{n=1}^{\infty} b_n$ by evaluating $L = \lim_{n \to \infty} \frac{a_n}{b_n}$.	If <i>L</i> is a real number and $L \neq 0$, then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge or both diverge.	Typically used for a series similar to a geometric or <i>p</i> -series. Often easier to apply than the comparison test.

Series or Test	Conclusions	Comments
	If $L = 0$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.	
	If $L = \infty$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.	
Integral Test If there exists a positive, continuous, decreasing function f such that $a_n = f(n)$ for all $n \ge N$, evaluate $\int_N^\infty f(x) dx$.	$\int_{N}^{\infty} f(x) dx$ and $\sum_{n=1}^{\infty} a_n$ both converge or both diverge.	Limited to those series for which the corresponding function f can be easily integrated.
Alternating Series $\sum_{n=1}^{\infty} (-1)^{n+1} b_n \text{ or } \sum_{n=1}^{\infty} (-1)^n b_n$	If $b_{n+1} \le b_n$ for all $n \ge 1$ and $b_n \to 0$, then the series converges.	Only applies to alternating series.
Ratio Test For any series $\sum_{n=1}^{\infty} a_n$ with	If $0 \le \rho < 1$, the series converges absolutely.	Often used for series involving factorials or exponentials.
nonzero terms, let $\rho = \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right .$	If $\rho > 1$ or $\rho = \infty$, the series diverges.	
	If $\rho = 1$, the test is inconclusive.	
Root Test For any series $\sum_{n=1}^{\infty} a_n$, let	If $0 \le \rho < 1$, the series converges absolutely.	Often used for series where $ a_n = b_n^n$.
$\rho = \lim_{n \to \infty} \sqrt[n]{ a_n }.$	If $\rho > 1$ or $\rho = \infty$, the series diverges.	
	If $\rho = 1$, the test is inconclusive.	