Final Exam
No book, electronics, calculator, or internet access. 125 points possible. 125 minutes maximum. Allowed notes: $1 / 2$ sheet of letter paper (ie. half of 8.5×11 sheet), with anything written on both sides.

1. (a) (5 pts) Sketch the region bounded by $y=\frac{1}{x}$ and the \boldsymbol{X}-axis, on the interval $1 \leq x<+\infty$.

(b) (8 pts) Compute the volume of the solid of revolution found by rotating the region in (a) around the x-axis, or show that it is infinite.

$$
\begin{aligned}
& V=\int_{1}^{\infty} \pi y(x)^{2} d x=\pi \int_{1}^{\infty} \frac{d x}{x^{2}} \\
&=\pi \lim _{t \rightarrow \infty} \int_{1}^{t} x^{-2} d x=\pi \lim _{t \rightarrow \infty}\left[-x^{-1}\right]_{1}^{t} \\
&\left.=\pi \lim _{t \rightarrow \infty}\left(-\frac{1}{t}+1\right)=\pi(0+1)=\pi\right) \\
& \text { (converge) }
\end{aligned}
$$

2. (7 pts) Set up, but do not evaluate, an integral for the arclength of the parametric curve defined by $x(t)=e^{t}, y(t)=\ln t$ on the interval $1 \leq t \leq 10$.

$$
\left(\frac{d x}{d t}=e^{t}\right)
$$

$$
\left.\frac{d y}{d t}=\frac{1}{t}\right)
$$

3. (8 pts) Compute the indefinite integral:

$$
\begin{aligned}
\int 5^{n 5^{2} d x} \frac{d u}{2} & =\frac{1}{2} \frac{5^{u}}{\ln 5}+c \\
& =\frac{5^{x^{2}}}{2 \ln 5}+c
\end{aligned}
$$

4. Evaluate the integrals:
(a) $(6 \mathrm{pts})$

$$
\left.\int_{0}^{\substack{\text { the integrals } \\ x}} \underset{\uparrow}{\substack{x-x \\ x}}=x\left(-e^{-x}\right)\right]_{0}^{3}-\int_{0}^{3}\left(-e^{-x}\right) d x
$$

$\left[\begin{array}{rl}\text { by purls: } & u=x \\ & v=-e^{-x} \\ & d u=d x \\ & d v=e^{-x} d x\end{array}\right]$

$$
\begin{aligned}
& =-\left[x e^{-x}\right]_{0}^{3}+\int_{0}^{3} e^{-x} d x=-\left(3 e^{-3}-0\right)-\left[e^{-x}\right]_{0}^{3} \\
& =-3 e^{-3}-e^{-3}+e^{-0}=1-4 e^{-3}
\end{aligned}
$$

${ }^{(b)}(\bar{p} p t) \quad \int \frac{d x}{x(1+x)}=\int \frac{1}{x}-\frac{1}{1+x} d x$ partial fraction::

$$
\begin{aligned}
& =\ln |x|-\ln |1+x|+c \\
& =\ln \left|\frac{x}{1+x}\right|+c
\end{aligned}
$$

$$
\begin{gathered}
\frac{1}{x(1+x)}=\frac{A}{x}+\frac{B}{1+x} \\
0 x+1=A(1+x)+B x \\
=(A+B) x+A \\
A=1, B=-1
\end{gathered}
$$

5. Evaluate the indefinite integrals:

$$
\begin{aligned}
& =\frac{1}{4} \int 1-\cos ^{2}(2 \theta) d \theta=\frac{1}{4} \int 1-\frac{1}{2}(1+\cos (4 \theta)) d \theta \\
& =\frac{1}{8} \int 1-\cos (4 \theta) d \theta=\frac{1}{8}\left[\theta-\frac{\sin (4 \theta)}{4}\right]+c \\
& =\frac{\theta}{8}-\frac{\sin (4 \theta)}{32}+C
\end{aligned}
$$

${ }^{(b)(\theta n t)} \int \frac{d z}{\sqrt{1+z^{2}}}=\quad \int \frac{\sec ^{2} \theta d \theta}{\sqrt{1+\tan ^{2} \theta}}=\int \frac{\sec ^{2} \theta}{\sec \theta} d \theta$.

$$
\left[\begin{array}{l}
z=\tan \theta \\
d z=\sec ^{2} \theta
\end{array}\right]
$$

-2 for stopping here

$$
=\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+c
$$

"[rom memory of "trick"]

6. Determine whether the following series converge or diverge. Explain your reasoning and identify any test used.
(a) $(6 p t s) \sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n+3}} \quad b_{n}=\frac{1}{\sqrt{n+3}}>0, \quad b_{n}$ decreasing,

Converges

$$
\lim _{n \rightarrow \infty} b_{n}=0
$$

by A.S.T.
(b) $(6 p t s)$

$$
\sum_{n=1}^{\infty} \frac{n}{10+\sqrt{n}}
$$

divergence test:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n}{10+\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{n \cdot \frac{1}{\sqrt{n}}}{(10+\sqrt{n}) \cdot \frac{1}{\sqrt{n}}} \\
& =\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\frac{10}{\sqrt{n}}+1}=\frac{\infty}{0+1}=+\infty
\end{aligned}
$$

or
\therefore dwerger

$$
\left.\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\frac{n}{10+\sqrt{n}}}{\frac{n}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{n(\sqrt{n})}{(10+\sqrt{n}) n} \\
& =\lim _{n \rightarrow \infty} \frac{n^{3 / 2}}{n^{3 / 2}+10 n}=1 \neq 0, \infty
\end{aligned} \right\rvert\, \begin{gathered}
\sum_{n=1}^{\infty} \frac{n}{\sqrt{n}}=\sum_{n=1}^{\infty} n^{1 / 2} \\
=\sum_{n=1}^{\infty} \frac{1}{n^{-1 / 2}} \\
p-\text { serines with } \\
p=-1 / 2 \leq 1 \text { diverge }
\end{gathered}
$$

7. (a) (8 pts) Find the Maclaurin series by any convenient method:

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \text { so } e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{n!}
$$

So

$$
\begin{aligned}
f(x)=x^{2} e^{-x^{2}} & =\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+2}}{n!}\right) \\
& =\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n}}{(n-1)!} \text { \} ~ j u s t ~ a s ~ o d ! ~ }
\end{aligned}
$$

(b) (8 pts) Use the result in (a) to compute the following antiderivative as a power series:

$$
\begin{aligned}
& =C+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} \frac{x^{2 n+3}}{2 n+3} \\
& \left.=C+\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n!} \frac{x^{2 n+1}}{2 n+1}\right\} \text { just as } x^{2 n+2} d x \\
& \text { good }
\end{aligned}
$$

8. (a) (6 pts) Does the series $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$ converge or diverge? Explain your reasoning and identify any test used.
ratio test:

$$
\begin{aligned}
& \rho=\lim _{n \rightarrow \infty} \frac{\frac{n+1}{2^{n+1}}}{\frac{n}{2^{n}}}=\lim _{n \rightarrow \infty} \frac{n+1}{n} \cdot \frac{2^{n}}{2^{n+1}} \\
& =\frac{1}{2} \lim _{n \rightarrow \infty} \frac{n+1}{n} \frac{L^{\prime \prime}+1}{=} \frac{1}{2}<1 \quad \therefore \text { converge }
\end{aligned}
$$

(root test similar)
(b) (5 pts) Compute and simplify S_{3} for the series in part (a).

$$
S_{3}=\frac{1}{2^{1}}+\frac{2}{2^{2}}+\frac{3}{2^{3}}=\frac{1}{2}+\frac{1}{2}+\frac{3}{8}=\frac{11}{8}
$$

9. (6 pts) Make a careful and reasonably-large sketch of the cardiod $r=1-\sin \theta$. (Label the axes and give dimensions/values along the axes.)

r	θ
0	1
$\pi / 4$	$1-\frac{1}{\sqrt{2}} \approx 0.3$
$\pi / 2$	0
$3 \pi / 4$	$1-\frac{1}{\sqrt{2}} \approx 0.3$
π	1
$5 \pi / 4$	$1+\frac{1}{\sqrt{2}} \approx 1.7$
$3 \pi / 2$	2
$7 \pi / 4$	$1+\frac{1}{\sqrt{2}} \approx 1.7$
2π	1

10. Consider the parametric curve $x=t+\frac{1}{t}, y=t-\frac{1}{t}$.
(a) (6 pts) Find the equation of the tangent line at $t=1$.

$$
m=\left.\frac{d y}{d x}\right|_{t=1}=\left.\frac{d y / d t}{d x / d t}\right|_{t=1}=\left.\frac{1+\frac{1}{t^{2}}}{1-\frac{1}{t^{2}}}\right|_{t=1}=\frac{2^{\prime \prime}}{0}
$$

$\therefore m=+\infty \quad$ (vertical)

$$
x(1)=1+\frac{1}{1}=2
$$

$$
\therefore \quad x=2
$$

(b) (6 pts) Compute the second derivative $\frac{d^{2} y}{d x^{2}}$.

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1+\frac{1}{t^{2}}}{\left(-\frac{1}{t^{2}}\right.}=\frac{t^{2}+1}{t^{2}-1} \\
& \begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{\frac{d}{d t}\left(\frac{t^{2}+1}{t^{2}-1}\right)}{d x / d t}=\frac{\frac{2 t\left(t^{2}-1\right)-\left(t^{2}+1\right)(2 z)}{\left(t^{2}-1\right)^{2}}}{1-\frac{1}{t^{2}}} \\
& =\frac{2 t\left(t^{2}-1-t^{2}-1\right)}{\left(t^{2}-1\right)^{2}\left(1-\frac{1}{t^{2}}\right)}=\frac{2 t(-2)}{\left(t^{2}-1\right)^{2}\left(t^{2}-1\right) \frac{1}{t^{2}}} \\
& =\frac{-4 t^{3}}{\left(t^{2}-1\right)^{3}}
\end{aligned}
\end{aligned}
$$

11. (8 pts) Find the radius and interval of convergence of the power series:
root test: $\rho=\lim _{n \rightarrow \infty} \frac{|x+5|}{(\sqrt[n]{n})^{2}}=\frac{|x+5|}{1}=|x+5|<1$

$$
|x+5|<1 \Leftrightarrow-1<x+5<1 \Leftrightarrow-6<x<-4
$$

$x=-6: \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$ converges (absolutely) $p=2$
x=-4: $\sum_{n=1}^{\infty} \frac{1^{n}}{n^{2}}$ converges $p=2$
$\therefore I=[-6,-4]$ and $R=1$
12. (8 pts) Find the general solution to the differential equation $y^{\prime}=\ln x+\tan x$.

$$
\left.\begin{array}{rl}
y(x) & =\int \ln x+\tan x d x=\int \ln x d x+\int \frac{\sin x}{\cos x} d x \\
& =x \ln x-\int x \cdot \frac{1}{x} d x-\ln |\cos x|+c \\
\text { Find the general solution to the differential equation } y^{\prime}=\ln x+\tan x . \\
{\left[\begin{array}{l}
u
\end{array}\right)=\ln x \quad v=x} \\
d u & =\frac{1}{x} d x d v=d x
\end{array}\right] \quad \text {. }
$$

$$
=x \ln x-x-\ln |\cos x|+c
$$

Extra Credit. (3 pts) First, explain in terms of familiar Maclaurin series, why $\frac{1}{e}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$.
Second, how accurate is $S_{9}=\sum_{n=0}^{9} \frac{(-1)^{n}}{n!}$ as an approximation to $1 / e$? Write your bound on the error in the box below.
Note $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. Substitute $x=-1$ to

This series is alternating

$\left|R_{N}\right| \leq b_{N+1}$. Here $N=a_{s}$
and converges so
$\left|R_{0}\right|=\left|S_{9}-\frac{1}{e}\right| \leq \frac{1}{10!}$
So $\left|R_{9}\right| \leq b_{10}=\frac{1}{10!}$.

You may find the following trigonometric formulas useful. However, there are other trig. formulas, not listed here, which you should have in memory, or which can be derived from these.

$$
\begin{aligned}
\sin (\alpha \pm \beta) & =\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
\cos (\alpha \pm \beta) & =\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
\sin (a x) \sin (b x) & =\frac{1}{2} \cos ((a-b) x)-\frac{1}{2} \cos ((a+b) x) \\
\sin (a x) \cos (b x) & =\frac{1}{2} \sin ((a-b) x)+\frac{1}{2} \sin ((a+b) x) \\
\cos (a x) \cos (b x) & =\frac{1}{2} \cos ((a-b) x)+\frac{1}{2} \cos ((a+b) x)
\end{aligned}
$$

Summary of Convergence Tests

Series or Test	Conclusions	Comments
Divergence Test For any series $\sum_{n=1}^{\infty} a_{n}$, evaluate $\lim _{n \rightarrow \infty} a_{n}$.	If $\lim _{n \rightarrow \infty} a_{n}=0$, the test is inconclusive.	This test cannot prove convergence of a series.
	If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, the series diverges.	
Geometric Series$\sum_{n=1}^{\infty} a r^{n-1}$	If $\|r\|<1$, the series converges to $a /(1-r)$.	Any geometric series can be reindexed to be written in the form $a+a r+a r^{2}+\cdots$, where a is the initial term and r is the ratio.
	If $\|r\| \geq 1$, the series diverges.	
p-Series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$	If $p>1$, the series converges.	For $p=1$, we have the harmonic series $\sum_{n=1}^{\infty} 1 / n$.
	If $p \leq 1$, the series diverges.	
Comparison Test For $\sum_{n=1}^{\infty} a_{n}$ with nonnegative terms, compare with a known series $\sum_{n=1}^{\infty} b_{n}$.	If $a_{n} \leq b_{n}$ for all $n \geq N$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.	Typically used for a series similar to a geometric or p-series. It can sometimes be difficult to find an appropriate series.
	If $a_{n} \geq b_{n}$ for all $n \geq N$ and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.	
Limit Comparison Test For $\sum_{n=1}^{\infty} a_{n}$ with positive terms, compare with a series $\sum_{n=1}^{\infty} b_{n}$ by evaluating $L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$	If L is a real number and $L \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both converge or both diverge.	Typically used for a series similar to a geometric or p-series. Often easier to apply than the comparison test.

Series or Test	Conclusions	Comments
	If $L=0$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges. If $L=\infty$ and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.	
Integral Test If there exists a positive, continuous, decreasing function f such that $a_{n}=f(n)$ for all $n \geq N$, evaluate $\int_{N}^{\infty} f(x) d x$.	$\int_{N}^{\infty} f(x) d x \text { and } \sum_{n=1}^{\infty} a_{n}$ both converge or both diverge.	Limited to those series for which the corresponding function f can be easily integrated.
Alternating Series $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n} \text { or } \sum_{n=1}^{\infty}(-1)^{n} b_{n}$	If $b_{n+1} \leq b_{n}$ for all $n \geq 1$ and $b_{n} \rightarrow 0$, then the series converges.	Only applies to alternating series.
Ratio Test For any series $\sum_{n=1}^{\infty} a_{n}$ with nonzero terms, let $\rho=\lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|$	If $0 \leq \rho<1$, the series converges absolutely.	Often used for series involving factorials or exponentials.
	If $\rho>1$ or $\rho=\infty$, the series diverges.	
	If $\rho=1$, the test is inconclusive.	
Root Test For any series $\sum_{n=1}^{\infty} a_{n}$, let $\rho=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|a_{n}\right\|}$.	If $0 \leq \rho<1$, the series converges absolutely.	Often used for series where$\left\|a_{n}\right\|=b_{n}^{n} .$
	If $\rho>1$ or $\rho=\infty$, the series diverges.	
	If $\rho=1$, the test is inconclusive.	

