Math 252 Calculus 2 (Bueler)

Final Exam

No book, electronics, calculator, or internet access. 125 points possible. 125 minutes maximum. Allowed notes: 1/2 sheet of letter paper (i.e. half of 8.5×11 sheet), with anything written on both sides.

1. (a) (5 *pts*) Sketch the region bounded by $y = \frac{1}{x}$ and the *x*-axis, on the interval $1 \le x < +\infty$.

(b) $(8 \ pts)$ Compute the volume of the solid of revolution found by rotating the region in (a) around the *x*-axis, or show that it is infinite.

2. (7 *pts*) Set up, but **do not evaluate**, an integral for the arclength of the parametric curve defined by $x(t) = e^t$, $y(t) = \ln t$ on the interval $1 \le t \le 10$.

3. (8 pts) Compute the indefinite integral:

$$\int x \, 5^{x^2} \, dx =$$

4. Evaluate the integrals:

(a) (6 pts)
$$\int_0^3 x e^{-x} dx =$$

(b) (6 pts)
$$\int \frac{dx}{x(1+x)} =$$

5. Evaluate the indefinite integrals:

(a)
$$(6 \ pts)$$
 $\int \cos^2 \theta \sin^2 \theta \, d\theta =$

(b) (6 pts)
$$\int \frac{dz}{\sqrt{1+z^2}} =$$

6. Determine whether the following series converge or diverge. Explain your reasoning and identify any test used.

(a) (6 pts)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+3}}$$

(b) (6 pts)
$$\sum_{n=1}^{\infty} \frac{n}{10 + \sqrt{n}}$$

7. (a) (8 pts) Find the Maclaurin series by any convenient method: $f(x) = x^2 e^{-x^2}$

(b) $(8 \ pts)$ Use the result in (a) to compute the following antiderivative as a power series:

$$\int x^2 e^{-x^2} \, dx =$$

8. (a) (6 pts) Does the series $\sum_{n=1}^{\infty} \frac{n}{2^n}$ converge or diverge? Explain your reasoning and identify any test used.

(b) $(5 \ pts)$ Compute and simplify S_3 for the series in part (a).

9. (6 pts) Make a careful and reasonably-large sketch of the cardiod $r = 1 - \sin \theta$. (Label the axes and give dimensions/values along the axes.)

- **10.** Consider the parametric curve $x = t + \frac{1}{t}$, $y = t \frac{1}{t}$.
- (a) (6 pts) Find the equation of the tangent line at t = 1.

(b) (6 *pts*) Compute the second derivative $\frac{d^2y}{dx^2}$.

11. $(8 \ pts)$ Find the radius and interval of convergence of the power series:

$$\sum_{n=1}^{\infty} \frac{(x+5)^n}{n^2}$$

12. (8 *pts*) Find the general solution to the differential equation $y' = \ln x + \tan x$.

Extra Credit. (3 *pts*) First, explain in terms of familiar Maclaurin series, why $\frac{1}{e} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$.

Second, how accurate is $S_9 = \sum_{n=0}^{9} \frac{(-1)^n}{n!}$ as an approximation to 1/e? Write your bound on the error in the box below.

$$|R_9| = \left|S_9 - \frac{1}{e}\right| \le$$

You may find the following **trigonometric formulas** useful. However, there are other trig. formulas, not listed here, which you should have in memory, or which can be derived from these.

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\sin(ax)\sin(bx) = \frac{1}{2}\cos((a-b)x) - \frac{1}{2}\cos((a+b)x)$$
$$\sin(ax)\cos(bx) = \frac{1}{2}\sin((a-b)x) + \frac{1}{2}\sin((a+b)x)$$
$$\cos(ax)\cos(bx) = \frac{1}{2}\cos((a-b)x) + \frac{1}{2}\cos((a+b)x)$$

EXTRA SPACE FOR ANSWERS

Summary	of	Convergence	Tests
		0	

Series or Test	Conclusions	Comments
Divergence Test For any series $\sum_{n=1}^{\infty} a_n$, evaluate	If $\lim_{n \to \infty} a_n = 0$, the test is inconclusive.	This test cannot prove convergence of a series.
$\lim_{n \to \infty} a_n.$	If $\lim_{n \to \infty} a_n \neq 0$, the series diverges.	
Geometric Series $\sum_{n=1}^{\infty} ar^{n-1}$	If $ r < 1$, the series converges to a/(1 - r).	Any geometric series can be reindexed to be written in the form $a + ar + ar^2 + \cdots$, where <i>a</i> is the initial term and <i>r</i> is the ratio.
	If $ r \ge 1$, the series diverges.	
<i>p</i> -Series $\sum_{n=1}^{\infty} \frac{1}{n^p}$	If $p > 1$, the series converges.	For $p = 1$, we have the harmonic series $\sum_{n=1}^{\infty} 1/n$.
	If $p \le 1$, the series diverges.	<i>n</i> = 1
Comparison Test For $\sum_{n=1}^{\infty} a_n$ with nonnegative terms, compare with a known series $\sum_{n=1}^{\infty} b_n$.	If $a_n \le b_n$ for all $n \ge N$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.	Typically used for a series similar to a geometric or p -series. It can sometimes be difficult to find an appropriate series.
	If $a_n \ge b_n$ for all $n \ge N$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.	
Limit Comparison Test For $\sum_{n=1}^{\infty} a_n$ with positive terms, compare with a series $\sum_{n=1}^{\infty} b_n$ by evaluating $L = \lim_{n \to \infty} \frac{a_n}{b_n}$.	If <i>L</i> is a real number and $L \neq 0$, then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ both converge or both diverge.	Typically used for a series similar to a geometric or <i>p</i> -series. Often easier to apply than the comparison test.

Series or Test	Conclusions	Comments
	If $L = 0$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.	
	If $L = \infty$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.	
Integral Test If there exists a positive, continuous, decreasing function <i>f</i> such that $a_n = f(n)$ for all $n \ge N$, evaluate $\int_N^\infty f(x) dx$.	$\int_{N}^{\infty} f(x) dx$ and $\sum_{n=1}^{\infty} a_n$ both converge or both diverge.	Limited to those series for which the corresponding function f can be easily integrated.
Alternating Series $\sum_{n=1}^{\infty} (-1)^{n+1} b_n \text{ or } \sum_{n=1}^{\infty} (-1)^n b_n$	If $b_{n+1} \le b_n$ for all $n \ge 1$ and $b_n \to 0$, then the series converges.	Only applies to alternating series.
Ratio Test For any series $\sum_{n=1}^{\infty} a_n$ with nonzero terms, let $\rho = \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right $.	If $0 \le \rho < 1$, the series converges absolutely.	Often used for series involving factorials or exponentials.
	If $\rho > 1$ or $\rho = \infty$, the series diverges.	
	If $\rho = 1$, the test is inconclusive.	
Root Test For any series $\sum_{n=1}^{\infty} a_n$, let $\rho = \lim_{n \to \infty} \sqrt[n]{ a_n }.$	If $0 \le \rho < 1$, the series converges absolutely.	Often used for series where $ a_n = b_n^n$.
	If $\rho > 1$ or $\rho = \infty$, the series diverges.	
	If $\rho = 1$, the test is inconclusive.	