\qquad

Final Exam

No book, electronics, calculator, or internet access. 125 points possible. 125 minutes maximum. Allowed notes: $\mathbf{1 / 2}$ sheet of letter paper (i.e. half of 8.5×11 sheet), with anything written on both sides.

1. (a) $(5$ pts $) \quad$ Sketch the region bounded by $y=\frac{1}{x}$ and the x-axis, on the interval $1 \leq x<+\infty$.
(b) (8 pts) Compute the volume of the solid of revolution found by rotating the region in (a) around the x-axis, or show that it is infinite.
2. (7 pts) Set up, but do not evaluate, an integral for the arclength of the parametric curve defined by $x(t)=e^{t}, y(t)=\ln t$ on the interval $1 \leq t \leq 10$.
3. (8 pts) Compute the indefinite integral:

$$
\int x 5^{x^{2}} d x=
$$

4. Evaluate the integrals:
(a) (6 pts) $\int_{0}^{3} x e^{-x} d x=$
(b) (6 pts) $\quad \int \frac{d x}{x(1+x)}=$
5. Evaluate the indefinite integrals:
(a) (6 pts) $\int \cos ^{2} \theta \sin ^{2} \theta d \theta=$
(b) (6 pts) $\int \frac{d z}{\sqrt{1+z^{2}}}=$
6. Determine whether the following series converge or diverge. Explain your reasoning and identify any test used.
(a) (6 pts) $\quad \sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n+3}}$
(b) (6 pts) $\quad \sum_{n=1}^{\infty} \frac{n}{10+\sqrt{n}}$
7. (a) (8 pts) Find the Maclaurin series by any convenient method: $f(x)=x^{2} e^{-x^{2}}$
(b) (8 pts) Use the result in (a) to compute the following antiderivative as a power series:

$$
\int x^{2} e^{-x^{2}} d x=
$$

8. (a) (6 pts) Does the series $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$ converge or diverge? Explain your reasoning and identify any test used.
(b) (5 pts) Compute and simplify S_{3} for the series in part (a).
9. (6 pts) Make a careful and reasonably-large sketch of the cardiod $r=1-\sin \theta$. (Label the axes and give dimensions/values along the axes.)
10. Consider the parametric curve $x=t+\frac{1}{t}, y=t-\frac{1}{t}$.
(a) (6pts) Find the equation of the tangent line at $t=1$.
(b) (6pts) Compute the second derivative $\frac{d^{2} y}{d x^{2}}$.
11. (8 pts) Find the radius and interval of convergence of the power series:

$$
\sum_{n=1}^{\infty} \frac{(x+5)^{n}}{n^{2}}
$$

12. (8 pts) Find the general solution to the differential equation $y^{\prime}=\ln x+\tan x$.

Extra Credit. (3 pts) First, explain in terms of familiar Maclaurin series, why $\frac{1}{e}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}$. Second, how accurate is $S_{9}=\sum_{n=0}^{9} \frac{(-1)^{n}}{n!}$ as an approximation to $1 / e$? Write your bound on the error in the box below.

$$
\left|R_{9}\right|=\left|S_{9}-\frac{1}{e}\right| \leq \square
$$

You may find the following trigonometric formulas useful. However, there are other trig. formulas, not listed here, which you should have in memory, or which can be derived from these.

$$
\begin{aligned}
\sin (\alpha \pm \beta) & =\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
\cos (\alpha \pm \beta) & =\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
\sin (a x) \sin (b x) & =\frac{1}{2} \cos ((a-b) x)-\frac{1}{2} \cos ((a+b) x) \\
\sin (a x) \cos (b x) & =\frac{1}{2} \sin ((a-b) x)+\frac{1}{2} \sin ((a+b) x) \\
\cos (a x) \cos (b x) & =\frac{1}{2} \cos ((a-b) x)+\frac{1}{2} \cos ((a+b) x)
\end{aligned}
$$

Summary of Convergence Tests

Series or Test	Conclusions	Comments
Divergence Test For any series $\sum_{n=1}^{\infty} a_{n}$, evaluate $\lim _{n \rightarrow \infty} a_{n}$.	If $\lim _{n \rightarrow \infty} a_{n}=0$, the test is inconclusive.	This test cannot prove convergence of a series.
	If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, the series diverges.	
Geometric Series$\sum_{n=1}^{\infty} a r^{n-1}$	If $\|r\|<1$, the series converges to $a /(1-r)$.	Any geometric series can be reindexed to be written in the form $a+a r+a r^{2}+\cdots$, where a is the initial term and r is the ratio.
	If $\|r\| \geq 1$, the series diverges.	
p-Series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$	If $p>1$, the series converges.	For $p=1$, we have the harmonic series $\sum_{n=1}^{\infty} 1 / n$.
	If $p \leq 1$, the series diverges.	
Comparison Test For $\sum_{n=1}^{\infty} a_{n}$ with nonnegative terms, compare with a known series $\sum_{n=1}^{\infty} b_{n}$.	If $a_{n} \leq b_{n}$ for all $n \geq N$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.	Typically used for a series similar to a geometric or p-series. It can sometimes be difficult to find an appropriate series.
	If $a_{n} \geq b_{n}$ for all $n \geq N$ and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.	
Limit Comparison Test For $\sum_{n=1}^{\infty} a_{n}$ with positive terms, compare with a series $\sum_{n=1}^{\infty} b_{n}$ by evaluating $L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$	If L is a real number and $L \neq 0$, then $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ both converge or both diverge.	Typically used for a series similar to a geometric or p-series. Often easier to apply than the comparison test.

Series or Test	Conclusions	Comments
	If $L=0$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges. If $L=\infty$ and $\sum_{n=1}^{\infty} b_{n}$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges.	
Integral Test If there exists a positive, continuous, decreasing function f such that $a_{n}=f(n)$ for all $n \geq N$, evaluate $\int_{N}^{\infty} f(x) d x$.	$\int_{N}^{\infty} f(x) d x \text { and } \sum_{n=1}^{\infty} a_{n}$ both converge or both diverge.	Limited to those series for which the corresponding function f can be easily integrated.
Alternating Series $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n} \text { or } \sum_{n=1}^{\infty}(-1)^{n} b_{n}$	If $b_{n+1} \leq b_{n}$ for all $n \geq 1$ and $b_{n} \rightarrow 0$, then the series converges.	Only applies to alternating series.
Ratio Test For any series $\sum_{n=1}^{\infty} a_{n}$ with nonzero terms, let $\rho=\lim _{n \rightarrow \infty}\left\|\frac{a_{n+1}}{a_{n}}\right\|$	If $0 \leq \rho<1$, the series converges absolutely.	Often used for series involving factorials or exponentials.
	If $\rho>1$ or $\rho=\infty$, the series diverges.	
	If $\rho=1$, the test is inconclusive.	
Root Test For any series $\sum_{n=1}^{\infty} a_{n}$, let $\rho=\lim _{n \rightarrow \infty} \sqrt[n]{\left\|a_{n}\right\|}$.	If $0 \leq \rho<1$, the series converges absolutely.	Often used for series where$\left\|a_{n}\right\|=b_{n}^{n} .$
	If $\rho>1$ or $\rho=\infty$, the series diverges.	
	If $\rho=1$, the test is inconclusive.	

