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Introduction

A convolution, denoted by ∗, is an operation on two functions, f and
k that produces a third function (f ∗ k).
In machine learning, the first argument, f , is the input, while the
second, k , is called a kernel. The output is called a feature map.

Convolutional neural networks (CNNs) are artificial neural networks
that use convolution in place of general matrix multiplication in at
least one of their layers.(Goodfellow et al.)
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Basic CNN Structure

© 2019 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

880 CATHERINE F. HIGHAM AND DESMOND J. HIGHAM

Fig. 7.1 Overview of the CNN used for the image classification task.

Block 2 applies convolution followed by activation and then a pooling layer. This
reduces the dimension to 8⇥ 8⇥ 32. In more detail, we use 32 filters, each of
which is 5⇥5 across the dimensions of the feature maps and also scans across
all 32 feature maps. So the weights could be regarded as a 5 ⇥ 5 ⇥ 32 ⇥ 32
tensor. The stride length is one, so the resulting 32 feature maps are still of
dimension 16⇥ 16. After ReLU activation, an average pooling layer of stride
two is then applied, which reduces each of the 32 feature maps to dimension
8 ⇥ 8.

Block 3 applies a convolution layer followed by the activation function, and then
performs a pooling operation in a way that reduces the dimension to 4⇥4⇥64.
In more detail, 64 filters are applied. Each filter is 5⇥5 across the dimensions
of the feature maps, and also scans across all 32 feature maps. So the weights
could be regarded as a 5 ⇥ 5 ⇥ 32 ⇥ 64 tensor. The stride has length one,
resulting in feature maps of dimension 8 ⇥ 8. After ReLU activation, an
average pooling layer of stride two is applied, which reduces each of the 64
feature maps to dimension 4 ⇥ 4.

Block 4 does not use pooling, just convolution followed by activation, leading to
dimension 1 ⇥ 1 ⇥ 64. In more detail, 64 filters are used. Each filter is 4 ⇥ 4
across the 64 feature maps, so the weights could be regarded as a 4⇥4⇥64⇥64
tensor, and each filter produces a single number.

Block 5 does not involve convolution. It uses a general (fully connected) weight
matrix of the type discussed in sections 2 to 6 to give output of dimension
1 ⇥ 1 ⇥ 10. This corresponds to a weight matrix of dimension 10 ⇥ 64.

A final softmax operation transforms each of the ten output components to the range
[0, 1].

Figure 7.1 gives a visual overview of the network architecture.
Our output is a vector of ten real numbers. The cost function in the optimization

problem takes the softmax log loss form (7.4) with K = 10. We specify stochastic
gradient with momentum, which uses a “moving average” of current and past gradient
directions. We use minibatches of size 100 (so m = 100 in (4.8)) and set a fixed number
of 45 epochs. We predefine the learning rate for each epoch: ⌘ = 0.05, ⌘ = 0.005, and
⌘ = 0.0005 for the first 30 epochs, next 10 epochs, and final 5 epochs, respectively.
Running on a Tesla C2075 GPU in single precision, the 45 epochs can be completed
in just under four hours.

As an additional test, we also train the network with dropout. Here, on each
stochastic gradient step, any neuron has its output reset to zero with independent
probability
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1D Discrete Convolution

Consider the convolution of s ∈ Rn and k ∈ Rm, (s ∗ k)(u), defined as

(s ∗ k)n =
m∑

j=1

su−jkj ,

where u ∈ Z.

To evaluate the convolution over all of s, we iterate this sum over u. This
means k slides over a flipped s, and the k weighted sum of
{si : u −m ≤ i ≤ u − 1} is stored in a vector as (s ∗ k)(u). This can cause
a small problem at the edges, which we explore by an example.
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Note

What machine learning convention calls a convolution kernel is what
mathematicians call a cross correlation kernel. A convolution kernel is the
vertical and horizontal reflection of a cross correlation kernel. These
reflections are important for other applications. 2D kernels show the
difference between the defintions best:

ML Convolution :



1 2 3
4 5 6
7 8 9


 , Math Convolution :



9 8 7
6 5 4
3 2 1




I will use the machine learning convention (no flip).
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1D Discrete Convolution: Example
Suppose our input is s = [1, 1, 3, 2, 1] and we want to convolve it with an
averaging kernel, k = [14 ,

1
2 ,

1
4 ].

1 1 3 2 1

s

1
4

1
2

1
4

k
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1D Discrete Convolution: Example

For u = 4, 5, 6 s = [1, 1, 3, 2, 1] and k = [14 ,
1
2 ,

1
4 ], we get

(s ∗ k)(4) =
3∑

j=1

s4−jkj = s3k1 + s2k2 + s1k3 = 3
1

4
+ 1

1

2
+ 1

1

4
=

3

2

(s ∗ k)(5) =
3∑

j=1

s5−jkj = s4k1 + s3k2 + s2k3 = 2
1

4
+ 3

1

2
+ 1

1

4
=

9

4

(s ∗ k)(6) =
3∑

j=1

s6−jkj = s5k1 + s4k2 + s3k3 = 1
1

4
+ 2

1

2
+ 3

1

4
=

8

9

Picking u = 1, 2, 3 or u > 6 is not defined, but this biases our convolution
toward the center values. Notice that s3 is the only element from s to
appear in each one.
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1D Discrete Convolution Example: Output

1 1 3 2 1

3
2

9
4

8
9
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1D Padding and Looping

When we don’t want the output of our convolution to be smaller than the
input, or when we want to avoid center bias, we can use padding or
looping.

Padding means adding extra values on each side. In our example, we
could add one zero on each side,

sp = [0, 1, 1, 3, 2, 1, 0].

Looping refers to placing a copy of s before and after s, so that the last
values come before the first, and vice-versa. In our example, we get

sl = [...3, 2, 1, 1, 1, 3, 2, 1, 1, 1, 3, ...],

where the original s is underlined.
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1D Padding Example
Using sp = [0, 1, 1, 3, 2, 1, 0] and k = [14 ,

1
2 ,

1
4 ], we can now find (sp ∗ k)(3)

and (sp ∗ k)(7) so that (sp ∗ k) is the same size as s.

(s ∗ k)(3) =
3∑

j=1

sp(3− j)kj = 1
1

4
+ 1

1

2
+ 0

1

4
=

3

4

(s ∗ k)(7) =
3∑

j=1

sp(7− j)kj = 0
1

4
+ 1

1

2
+ 2

1

4
= 1.

3
4

3
2

9
4

8
9 1
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Discrete 2D Convolution: Edge detection

In order to apply a convolution to an image, we need a two dimensional
version. Rather than define this using a complicated sum, we look at
matrices. Suppose we have a 6x6, black and white image, A, that we wish
to detect the vertical edges of. One simple way to do this is to convolve A
with a 3x3 kernel Kv .

A =




10 10 10 0 0 0
10 10 10 0 0 0
10 10 10 0 0 0
10 10 10 0 0 0
10 10 10 0 0 0
10 10 10 0 0 0
10 10 10 0 0 0




, Kv =



1 0 −1
1 0 −1
1 0 −1



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Computing Discrete 2D Convolution

To compute (A ∗ Kv ), we place Kv in the top left corner of A, multiplying
term-by-term the values of this corner of A times the values of Kv and
summing them (NOT matrix multiplication!) We slide Kv over 1 spot, and
iterate until we have covered all of A.

A ∗ Kv =




10 10 10 0 0 0
10 10 10 0 0 0
10 10 10 0 0 0
10 10 10 0 0 0
10 10 10 0 0 0
10 10 10 0 0 0




∗



1 0 −1
1 0 −1
1 0 −1


 =




0 30 30 0
0 30 30 0
0 30 30 0
0 30 30 0


 .
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Visualizing a Convolution

Figure 2: A single location in a 2-D convolution. Source: [7]

to the references or other resources for practice problems and in-depth explanations.
Step-by-step video lectures for basic problems can also be found online, and are
highly recommended.

4 Image Filters

Now that the reader has an idea of some of the mathematics behind image
filters, we will introduce various types of filters and their applications, as well as real
implementations using MATLAB. First, filters for image enhancement and edge-
extraction will be presented. Gaussian and low-pass filters will then demonstrated
as effective ways to reduce noise in signals, and improve the quality of images.

4.1 Sobel-Edge Detectors

Many applications in engineering and science require the correct identification of
edges. For instance, many tools for automated manufacturing processes are equipped
with cameras to detect markers (such as a thick black line) that might designate
special reference points or physical locations. Another application relates to pattern

6
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Discrete 2D Convolution: Padding

If the output is restricted to only positions where the kernel lies entirely
within the image, this is called a valid convolution (Goodfellow et al.).

If the kernel will slide partially off of the input image, but we don’t want
to restrict the output, padding is used.

Padding A with zeros creates an 8x8:

Ap =




0 0 0 0 0 0 0 0
0 10 10 10 0 0 0 0
0 10 10 10 0 0 0 0
0 10 10 10 0 0 0 0
0 10 10 10 0 0 0 0
0 10 10 10 0 0 0 0
0 10 10 10 0 0 0 0
0 0 0 0 0 0 0 0




.
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Discrete 2D Convolution: Striding

Another way to change the size of the output of a convolution is called
striding. Usually, a stride is 1, moving the kernel 1 pixel at a time. A
stride of 2, for example, means that the kernel skips over a pixel each time
it moves. As an example of a stride of 2 with Kv , we use an odd-sized
matrix so that the convolution is valid.

As ∗ Kv =




10 10 10 0 0
10 10 10 0 0
10 10 10 0 0
10 10 10 0 0
10 10 10 0 0




∗



1 0 −1
1 0 −1
1 0 −1


 =

(
0 30
0 30

)
.
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Discrete 2D Convolutions: Output Size

The size of the output depends on the input size (nxn), kernel size (fxf ),
padding (p), and striding (s. Here is a formula to determine the output
size (from Andrew Ng):

⌊
n + 2p − f

s
+ 1

⌋
x

⌊
n + 2p − f

s
+ 1

⌋
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Discrete 2D Convolution: RGB Image

A digital image is created using discrete image pixels with different ratios
of red, green, and blue (RGB). This is represented as a tensor. For a 6x6
RGB image, there are really 3 6x6 matrices of pixel values (3rd order 6x6
tensor). Each order of the tensor is called a channel. To convolve such an
image, we need to apply a kernel to each one.
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Convolution Image Example: Horizontal and vertical edge
filters

Figure 1: Original image and combined results of vertical and horizontal edge-
detection kernels

3.3 Convolution

Convolution can be intuitively described as a function that is the integral or
summation of two component functions, and that measures the amount of overlap
as one function is shifted over the other. An easy way to think of convolution with
respect to one variable is to picture a square pulse sliding across the x-axis towards a
second square pulse. The convolution at a point is the product of the two functions
that occurs when the leading edge of the moving pulse is at that point. When actually
taking the convolution of two functions, one function is flipped with respect to the
independent variable before shifting, and a change of variables from t to τ is used to
facilitate the shifting operation. In one dimension, the mathematical definitions of
convolution in discrete and continuous time are indicated by the ”∗” operator:

If f and g are functions in t, then the convolution of f and g over an infinite interval
is an integral given by:

f ∗ g ≡
∫ ∞

−∞
f(τ)g(t − τ)dτ (1)

4

Kernels used: Vertical and horizontal Sobel filters (Kim,Casper)



−1 0 1
−2 0 2
−1 0 1


 ,




1 2 1
0 0 0
−1 −2 −1



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Convolutional Neural Networks

CNN net training finds the weights in the kernel that is applied to the
image

▶ CNNs typically have sparse interactions because the kernel is smaller
than the input

▶ For example, an image might have millions of pixels, a CNN can detect
meaningful features using kernels with tens or hundreds of pixels.
(Goodfellow et al.)

▶ Since the kernel is typically smaller than the input, CNNs store less
parameters, regardless of input size

▶ Using
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A Convolutional Layer
The most basic convonlutional layer (that no one would use) applies the
convolution shown below. Training the layer goes as follows:

Each filter starts with randomized values

Compute convolution, add a bias

ReLu is applied

Flatten into a long vector, apply logistic regression

Back-propogation updates the values in the kernels and the biases
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CNN Architecture
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Further Reading

Higham C., Higham D. (2018) Deep Learning: An Introduction for
Applied Mathematicians, SIAM

Kim, S., Casper, R. (2013). Applications of convolution in image
processing with MATLAB. University of Washington, 1-20.

Goodfellow, I., Benjio Y., Courville A. Deep Learning. MIT

Convolutional Neural Networks Course by Andrew Ng, youtube

Convolutions in image processing by Grant Sanderson, youtube
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