Machine Learning Seminar

Support Vector Machine – Concepts, Theory, Application to classifications

Kyungmin Kim MATH F692 Mathematics for Machine Learning 3/03/2022

Presentation Outline

- What is Support Vector Machine (SVM)?
- Basic Concepts/ Theory regarding SVM and Classification
- Basic Python example
- Application of SVM to real-world examples
- SVM and optimization algorithm
- SVM and Perceptron comparison

What is Support Vector Machine?

- Introduced by Vapnik, 1995 paper as "Support vector networks"
- Supervised learning method for analyzing data for classification and regression.
- Getting Optimal way to separate data in the given number of class by labelled training data.
- It have generalizing capacity for using various application.
- It applies to both linear classification and non-linear case with kernel trick.

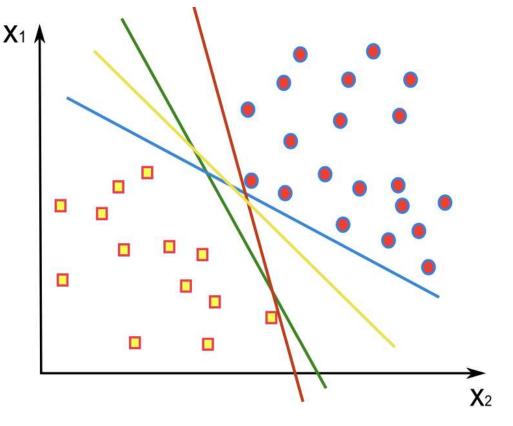
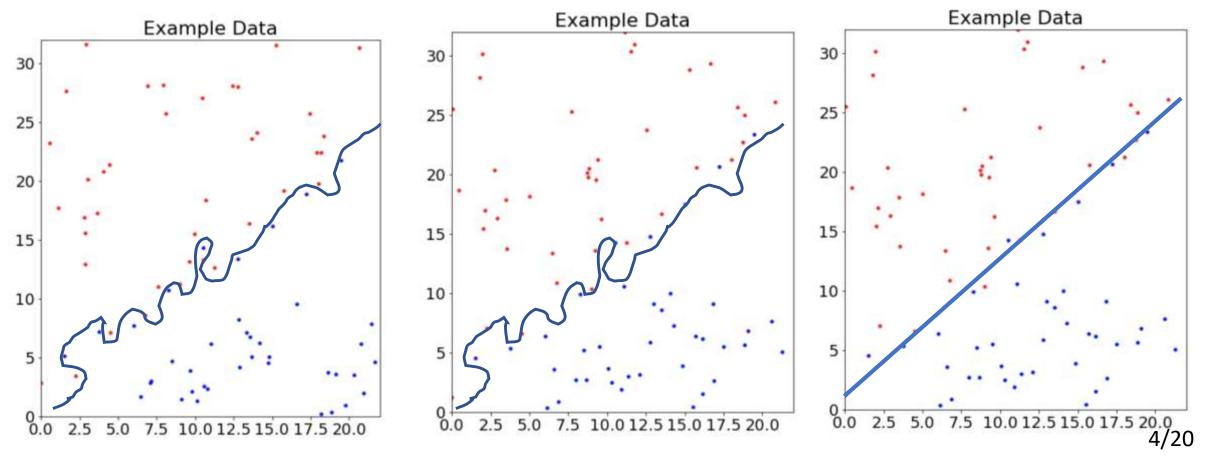


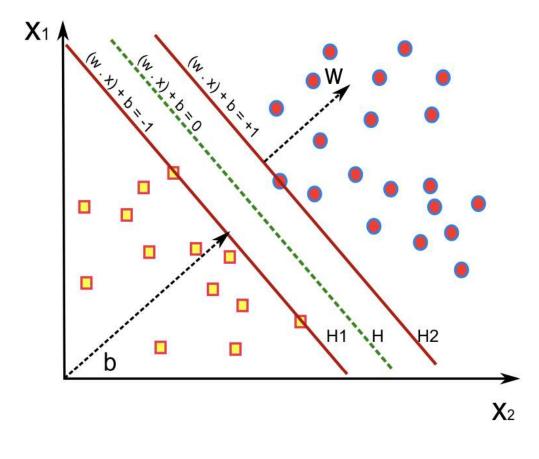
Fig. 1. Separation hyperplanes.

General objective of Classification

 Classification output should be based on training set, but it should not "memorize" training data set



Classification with linearly separable case



Optimizing the geometric margin means minimizing separating hyperplane

$$\langle w \cdot x^+ \rangle + b = 1$$

 $\langle w \cdot x^- \rangle + b = -2$

Geometric margin of x-y-x $\gamma_i = \frac{1}{2} \left(\left\langle \frac{w}{\|w\|} \cdot x^+ \right\rangle - \left\langle \frac{w}{\|w\|} \cdot x^- \right\rangle \right)$ $= \frac{1}{2w} \left[\left\langle w \cdot x^+ \right\rangle - \left\langle w \cdot x^- \right\rangle \right]$ $= \frac{1}{\|w\|}$

w: optimal separation hyperplaneB: bias

Data lies in H1, H2 plane is "Support Vector"

Linearly Separable case and Lagrange Multiplier

For the Linearly Separable case

 $S = [(x_1, y_1) \cdots (x_N, y_N)]$

Solution

 $\min\langle w \cdot w \rangle = ||w||^2$

Subject to : $y_i(\langle w \cdot x_i \rangle + b) \ge 1$

Then the maximal margin is given by $\gamma = \frac{1}{\|w\|}$

Change solution to dual problem using the Lagrange formula

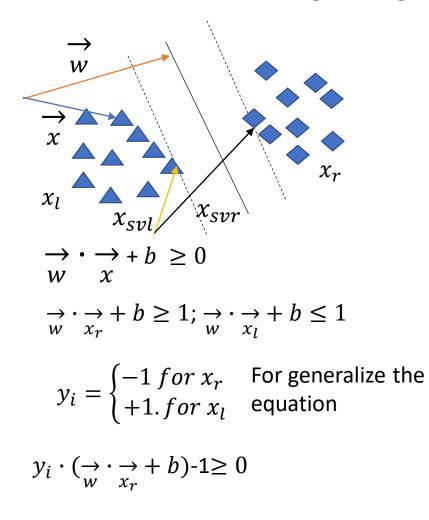
$$L(w, b, \alpha) = \frac{1}{2} \langle w \cdot w \rangle - \sum_{i=1}^{N} \alpha_i [y_i(\langle w \cdot x_i \rangle + b - 1)]$$

 α_i : Lagrange Multiplier

Lagrange Multiplier : Strategy point to find local minimum and maximum point in equally constraints

Minimize $2x_1^2 + x_2^2$ Subject to : $x_1 + x_2 = 1$ $\frac{df}{dx_1} = 4x_1$, $\frac{df}{dx_2} = 2x_2$ $L(x_1, x_2, \lambda) = 2x_1^2 + x_2^2 + \lambda(1 - x_1 - x_2)$ $\lambda = \frac{4}{3}$ -> get solution of $x_1 = \frac{1}{3}$, $x_2 = \frac{2}{3}$ $\nabla f(x^*) = \lambda \nabla h(x^*)$ 6/20 $x_1 + x_2 = 1$

Example of Lagrange Multiplier and support vector machine



Width of Dashed line

Hyperplane between two dataset Minimize $\frac{1}{2}|w|^2$

Lagrangian we want to minimize

$$= \frac{1}{2} |w|^2 - \sum_i \alpha_i \left(y_{svi} \cdot \left(\frac{1}{w} \cdot \frac{1}{x_{svi}} + b \right) - 1 \right)$$

 $\frac{2}{|w|}$

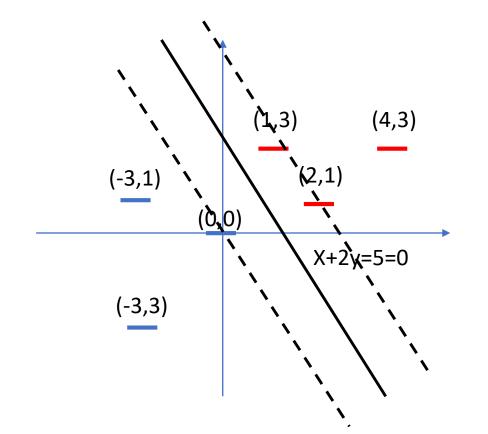
 α_i : Lagrangian Multiplier

Expanding the expression

$$= \frac{1}{2} |w|^2 - \sum_i \alpha_i \left(y_{svi} \cdot \left(\frac{1}{w} \cdot \frac{1}{x_{svi}} + b \right) \right) + \alpha_i$$

$$\mathbf{L} = \sum_{i} \alpha - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \xrightarrow[x_{SV}]{} x_{SV}$$

Example of Lagrange Multiplier and support vector machine



Point (0,0), (2,1) and (1,3) closest to the separating hyperplane, and work as "support vector"

 $\alpha_i = 1 \ for \ (0,0)$ $\alpha_i = 0.5 \ for \ (1,3), \ (2,1)$

Point far away from plane (e.g. (-3,3)) are not work as support vector

Inequaility constraints and Karush-Kuhn-Tucker Conditions

Karush-Kuhn-Tucker condition (KKT)

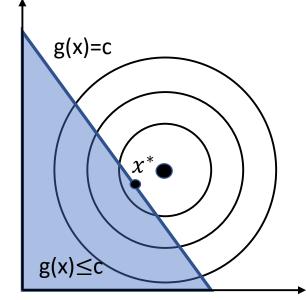
Condition to obtain an optimal solution to a general optimization problem.

 $\begin{array}{l} \text{Minmize } \mathsf{f}(\mathsf{w}), \mathsf{w} \in \Omega \\ g_i(w) \leq 0, i = 1, \dots, k \\ h_i(w) = 0, \mathrm{i} = 1, \dots, \mathrm{m} \end{array}$

Necessity and sufficient conditions for a normal point w^* to be optimal are the existence of α , β such that

 $\frac{\partial L(\alpha^*, \beta^*, w^*)}{\partial w} = 0$ $\frac{\partial L(\alpha^*, \beta^*, w^*)}{\partial \beta} = 0$ From KKT condition if training set linearly separable $\alpha_i g_i(w^*) = 0$ $g_i(w^*) \le 0$ $\alpha_i^* \ge 0 \qquad ||w||^2 = \langle w^* \cdot w^* \rangle = \left(\sum \alpha_i\right)^{-1/2}$

L(x) is Lagrangean Function L(x)=f(x)- $\alpha_i(g_i(x) - c)$



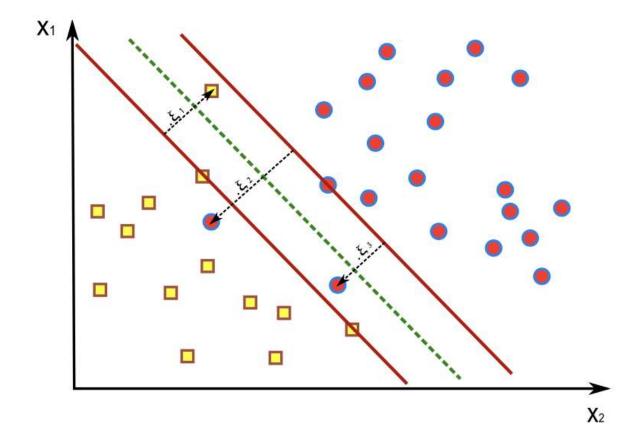
If $g(x^*)=c, L'_i(x^*)=0$

 $\alpha_i \ge 0$ in this case If $\alpha_i < 0$ small decrease in x increase the value of f g(x)=c (x*•) g(x)≤c

If g(x^*)<c, $f'_i(x^*)$ =0

 α_i does not enter the condition and can set $\alpha_i = 0$

Soft Margin Hyperplane



For linearly separable case

 $y_i(\langle w \cdot x_i \rangle + b) \ge 1$

Allow ζ term to make data linearly separable

 $y_i(\langle w^T \cdot x_i \rangle + b) \ge 1 - \xi_i \quad \forall i$

Width of margin can be determined by penalty parameter C

$$\min_{\substack{w,b,\xi_i}} \langle w \cdot w \rangle + C \sum_{i=1}^l \xi_i^2$$
s.t. : $y_i (\langle w \cdot x_i \rangle + b) \ge 1 - \xi_i$
 $\xi_i \ge 0$

Subject to

$$\langle w \cdot x_i \rangle + b \ge +1 - \xi_i, y_i = +1, \xi_i \ge 0$$

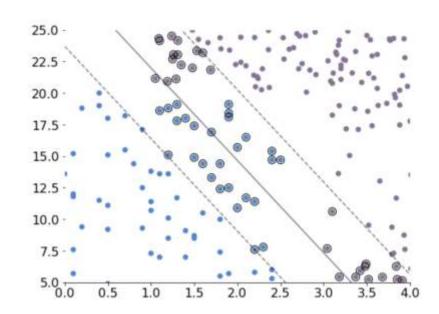
 $\langle w \cdot x_i \rangle + b \le -1 + \xi_i, y_i = -1, \xi_i \ge 0$

Python example of Soft Margin Hyperplane

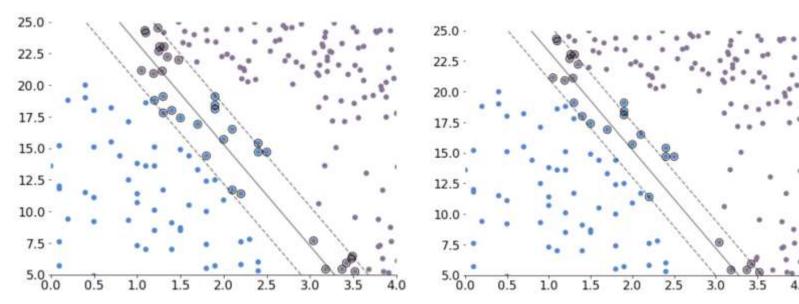
model = svm.SVC(kernel='linear',C=100)
model.fit(x_train, y_train)

Degree of "soft margin" determined by regularization factor C

C= 0.1



C= 1.0



C= 100

Kernel function

Basic Idea :

Input vector $x \in \mathbb{R}^n$ project to higher dimensional feature space

 $\mathbf{x} \in \mathbb{R}^n \to \Phi(\mathbf{x}) = \left[\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \dots, \phi_n(\mathbf{x})\right]^T \in \mathbb{R}^f$

Hypothesis considered to be

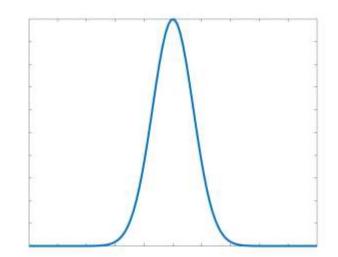
$$f(\mathbf{x}) = \sum_{i=1}^{l} w_i \phi_i(\mathbf{x}) + b$$

For Kernel function K, each $x,z \in K$

 $K(\mathbf{x}, \mathbf{z}) = \langle \phi(\mathbf{x}) \cdot \phi(\mathbf{z}) \rangle$

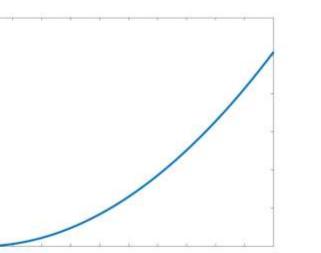
Kernel function must obey following property

1. $x \cdot x = 0$ only if x = 02. $x \cdot x > 0$ otherwise 3. $x \cdot y = y \cdot x$ 4. $(\alpha x \cdot y) = \alpha(x \cdot y)$ 5. $(z + x) \cdot y = (z \cdot y) + (x \cdot y)$ Polynomial Kernel : $K(x_i, x_j) = (x_i \cdot x_j + 1)^p$ Gaussian Kernel : $K(x_i, x_j) = e^{-\frac{\|x_i - x_j\|^2}{2\sigma^2}}$ RBF Kernel : $K(x_i, x_j) = e^{-\gamma(xi - xj)^2}$ Sigmoid kernel : $K(x_i, x_j) = \tanh(\eta x_i \cdot x_j + \eta)^2$

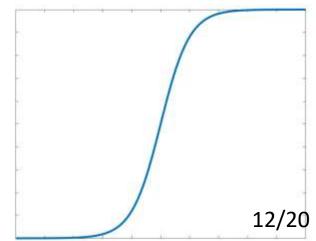


RBF Kernel Function

Polynomial



Sigmoid Kernel Function



Mercer's Theorem

Condition of a function to be kernel A symmetric continuous function

 $K: \, [a,b] \, \times \, [a,b] \, \rightarrow \, \mathbb{R}$

K is positive semi-definite if and only if

$$\sum_{i=1}^n \sum_{j=1}^n K(x_i, x_j) c_i c_j \ge 0$$

For all finite sequence of points $x_1, x_2, ..., x_N$ And all choice of real number $c_1, c_2, ..., c_N$

Associated to K is a linear operator on function defined by

$$[T_{K\varphi}](x) = \int_{a}^{b} K(x,s)\varphi(s)ds$$

_{II}2

Ш

For Mercer's theorem, any symmetric feature that maps a feature space of x times x, it is square integrable on its domain and satisfies its integral.

Mercer's condition

Given a finite input space X = { $x_1, x_2 \dots, x_n$ } and realvalued function K=($K(x_i \cdot x_j)$) $_{i,j=1}^n$

$$\iint g(x)K(x,y)g(y)dxdy \ge 0$$

Example

A positive constant function K(x,y)=c

 $\iint g(x)cg(y)dxdy = c \int g(x)dx \int g(y)dy = c(\int g(x)dx)^2$

Gaussian kernel function

$$K(x_i, x_j) = e^{-\frac{\|x_i - x_j\|}{2\sigma^2}}$$
$$e^{-\frac{1}{2\sigma^2}(x_i - x_j)^2} = e^{\frac{-x_i^2 - x_j^2}{2\sigma^2}}(1 + \frac{2x_i x_j}{1!} + \frac{(2x_j x_j)^2}{2!} + \cdots)$$
$$= \phi(x_i)^T \phi(x_j)$$

Weakness of Support Vector Machine

- Excessive computation cost in large datasets because kernel matrix grow quadratic form with the size of data
- SVM designed to solve binary problems multi-classification case are necessary to change as multiple binary classification problem.
- Difficult to get optimal separation hyperplane for an SVM trained with imbalance data.
- Including synthetic minority data to improve classification accuracy (Koknar-Tezel and Latecki 2009)

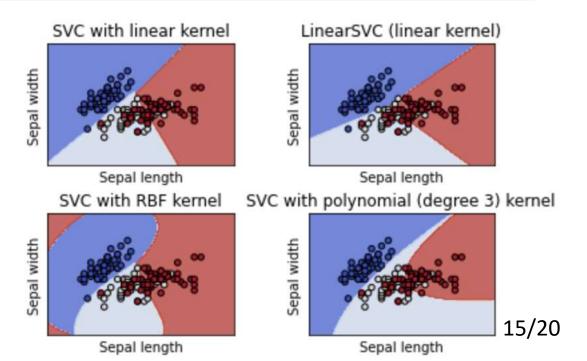
"Weighted" SVM algorithm to overcome imbalance data set (Du and Chen 2005)

Python classification by Support Vector machine

```
models = (
    svm.SVC(kernel="linear", C=C),
    svm.LinearSVC(C=C, max_iter=10000),
    svm.SVC(kernel="rbf", gamma=0.7, C=C),
    svm.SVC(kernel="poly", degree=3, gamma="auto", C=C),
)
models = (clf.fit(X, y) for clf in models)
```

Three species of IRIS

Iris VersicolorIris SetosaIris VirginicaSource : https://scikit-learn.org/stable/modules/svm.html



Support Vector Machine with Imbalanced dataset

Get different Hyperplane by weighting imbalanced data.

```
# fit the model and get the separating hyperplane
clf = svm.SVC(kernel="linear", C=1.0)
clf.fit(X, y)
```

fit the model and get the separating hyperplane

wclf = svm.SVC(kernel="linear", class weight={1: 10})

using weighted classes

wclf.fit(X, y)

Source : https://scikit-learn.org/stable/modules/svm.html

```
# get the separating hyperplane
Z = clf.decision_function(xy).reshape(XX.shape)
# plot decision boundary and margins
a = ax.contour(XX, YY, Z, colors="k", levels=[0], alpha=0.5, linestyles=["-"])
# get the separating hyperplane for weighted classes
Z = wclf.decision_function(xy).reshape(XX.shape)
# plot decision boundary and margins for weighted classes
b = ax.contour(XX, YY, Z, colors="r", levels=[0], alpha=0.5, linestyles=["-"])
```


SVM application to Volcano-seismicity classification

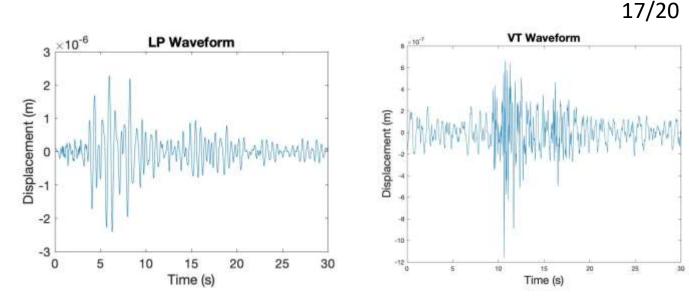
LP : Volcanic Long Period events (associated with resonance of fluid-filled crack)

VT : Volcano tectonic Earthquake (associated with brittle fracture of rock)

- TC : Tectonic Earthquake
- OT : Other signal (e.g. melting glacier, storm etc) (Curilem et al. 2014)

Characterizing Different waveform features of LP and VT waveform for testing -> Auto-classification SVM (Malfante et al. 2018)

Different Type of Signal from Great Sitkin



Optimization algorithm

What is appropriate optimization algorithm for solving SVM?

First-Order Algorithm

- Gradient Descent
- Momentum
- Adagrad
- RMSProp

Second-Order Algorithm

- Newton's method
- Secant Method
- Quasi-Newton Method

For Non-differential Object Function

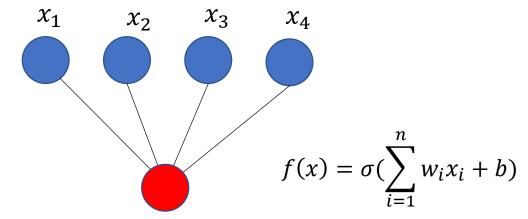
- Direct Algorithm
- Stochastic Algorithm
- Population Algorithm

Direct algorithm : Navigate the pattern search as they navigate the space using geometric shape or decision (e.g. pattern)

Stochastic Algorithm: Algorithm that make use of randomness of search procedure

Population Algorithm: Algorithm maintaining a pool of candidate solution are used sample, explore an optima.

Single layer Perceptron and compared to SVM



The output of the neuron is a linear combination of the inputs

```
Argument X:= \{x_1, ..., x_m\} \subset x (data)

Y:= \{x_1, ..., x_m\} \subset \{\pm 1\} (label)

Function(w,b) = Perceptron(X,Y)

initialize w,b=0

repeat

Pick (x_i, y_i) from data

if yi(w*xi+b) \leq 0 Then

w' = w + y_i x_i

b' = b + y_i

Until yi(w*xi+b) >0 for all i
```

Source : http://alex.smola.org/teaching/pune2007/pune_3.pdf

Perceptron : Update classification for each iteration, different from SVM

SVM : Get the optimal "hyperplane" between classification data. For perceptron, the classification cannot be optimal out of data

Single-layer perceptron : Form of SVM?

Summary

- Support Vector Machine is useful for learning method of classification
- It aims to get optimal hyperplane to classify data in feature space.
- Hyperplane between different category of data can be get from linearly separate case.
- Soft Margin of Hyperplane, Kernel trick(method) is used for more complex real-world data
- Appropriate optimization algorithm is needed for SVM and classification problem
- SVM can be interpreted as Single-layer perceptron