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Presentation Outline

• What is Support Vector Machine (SVM)?

• Basic Concepts/ Theory regarding SVM and Classification

• Basic Python example

• Application of SVM to real-world examples

• SVM and optimization algorithm

• SVM and Perceptron comparison

2/20



What is Support Vector Machine?

• Introduced by Vapnik, 1995 paper as 
“Support vector networks”

• Supervised learning method for analyzing 
data for classification and regression. 

• Getting Optimal way to separate data in the 
given number of class by labelled training 
data.

• It have generalizing capacity for using various 
application.

• It applies to both linear classification and 
non-linear case with kernel trick. 

3/20



General objective of Classification

• Classification output should be based on training set, but it should 
not “memorize” training data set
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Classification with linearly separable case

𝑤 ∙ 𝑥+ + 𝑏 = 1

𝑤 ∙ 𝑥− + 𝑏 = −1

𝛾𝑖 =
1
2

𝑤
𝑤

∙𝑥+ −
𝑤
𝑤

∙𝑥−

=
1

2𝑤
𝑤 ∙ 𝑥+ − 𝑤 ∙ 𝑥−

= 1
𝑤

Geometric margin of x-y-x

Optimizing the geometric margin means minimizing 
separating hyperplane 
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w: optimal separation hyperplane
B: bias

Data lies in H1, H2 plane is “Support Vector”



Linearly Separable case and Lagrange Multiplier

For the Linearly Separable case

𝑆 = 𝑥1, 𝑦1 ⋯ 𝑥𝑁, 𝑦𝑁

Solution

min 𝑤 ∙ 𝑤 = 𝑤 2

Subject to : 𝑦𝑖 𝑤 ∙ 𝑥𝑖 + 𝑏 ≥1

Then the maximal margin is given by 𝛾= 1

𝑤

Change solution to dual problem using the Lagrange 
formula

𝐿(𝑤, 𝑏, 𝛼)=1
2
𝑤∙𝑤 −σ𝑖=1

𝑁 𝛼𝑖 𝑦𝑖 𝑤∙𝑥𝑖 +𝑏−1

𝛼𝑖: Lagrange Multiplier

Lagrange Multiplier : Strategy point to find local 
minimum and maximum point in equally constraints

Minimize 2𝑥1
2 + 𝑥2

2

Subject to : 𝑥1 + 𝑥2 = 1
𝑑𝑓

𝑑𝑥1
= 4𝑥1 , 

𝑑𝑓

𝑑𝑥2
= 2𝑥2

𝐿 𝑥1, 𝑥2, 𝜆 = 2𝑥1
2 + 𝑥2

2 + 𝜆(1 − 𝑥1 − 𝑥2)

𝑥1 + 𝑥2 = 1

∇f(𝑥∗)=𝜆∇ℎ(𝑥∗)
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𝜆 = 4

3
-> get solution of 𝑥1 =

1

3
, 𝑥2 =

2
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Example of Lagrange Multiplier and support vector machine

՜
𝑤

՜
𝑥

՜
𝑤
∙ ՜
𝑥

+ 𝑏 ≥ 0

𝑥𝑙

𝑥𝑟

𝑦𝑖 = ቊ
−1 𝑓𝑜𝑟 𝑥𝑟
+1. 𝑓𝑜𝑟 𝑥𝑙

՜
𝑤
∙ ՜
𝑥𝑟
+ 𝑏 ≥ 1; ՜

𝑤
∙ ՜
𝑥𝑙
+ 𝑏 ≤ 1

𝑦𝑖 ∙ (՜
𝑤
∙ ՜
𝑥𝑟
+ 𝑏)-1≥ 0

For generalize the 
equation

𝑥𝑠𝑣𝑙
𝑥𝑠𝑣𝑟

Width of Dashed line 2
𝑤

Hyperplane between two dataset
1
2
𝑤 2

Lagrangian we want to minimize

L = 1
2
𝑤 2 − σ𝑖 𝛼𝑖 𝑦𝑠𝑣𝑖 ∙ ՜

𝑤
∙ ՜
𝑥 𝑠𝑣𝑖

+ 𝑏 − 1

𝛼𝑖: 𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟

L = 1
2
𝑤 2 −σ𝑖 𝛼𝑖 𝑦𝑠𝑣𝑖 ∙ ՜

𝑤
∙ ՜
𝑥 𝑠𝑣𝑖

+ 𝑏 + 𝛼𝑖

Expanding the expression
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Minimize

L =

𝑖

𝛼 − 1
2


𝑖



𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗
𝑥𝑆𝑉 𝑥𝑆𝑉



Example of Lagrange Multiplier and support vector machine

(0,0)

(-3,1)

(1,3)

(2,1)

(4,3)

(-3,3)

X+2y=5=0

Point (0,0), (2,1) and (1,3) closest to the separating 
hyperplane, and work as “support vector”

Point far away from plane (e.g. (-3,3)) are not work as 
support vector

𝛼𝑖 = 1 𝑓𝑜𝑟 (0,0)
𝛼𝑖 = 0.5 𝑓𝑜𝑟 1,3 , (2,1)
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Inequaility constraints and Karush-Kuhn-Tucker Conditions

Karush-Kuhn-Tucker condition (KKT)

 Condition to obtain an optimal solution to 
a general optimization problem.

Minmize f(w), w∈ Ω
𝑔𝑖 𝑤 ≤ 0, 𝑖 = 1,… , 𝑘
ℎ𝑖 𝑤 = 0, i = 1,… ,m

Necessity and sufficient conditions for a 
normal point 𝑤∗ to be optimal are the 
existence of 𝛼, 𝛽 such that

𝜕𝐿(𝛼∗, 𝛽∗,𝑤∗)
𝜕𝑤

=0

𝜕𝐿(𝛼∗,𝛽∗,𝑤∗)
𝜕𝛽

=0

𝛼𝑖𝑔𝑖 𝑤
∗ =0

𝑔𝑖 𝑤
∗ ≤0

𝛼𝑖
∗≥0

L(x) is Lagrangean Function
L(x)=f(x)-𝛼𝑖 𝑔𝑖 𝑥 − 𝑐

g(x)=c g(x)=c

g(x)≤c g(x)≤c

𝑥∗ 𝑥∗

If g(𝑥∗)=c, 𝐿𝑖
′ 𝑥∗ =0 If g(𝑥∗)<c, 𝑓𝑖

′ 𝑥∗ =0

𝛼𝑖 ≥ 0 in this case
If 𝛼𝑖 < 0 small decrease in x 
increase the value of f

𝛼𝑖 does not enter the 
condition and can set 𝛼𝑖 = 0
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From KKT condition if training 
set linearly separable

𝑤 2 = 𝑤∗ ∙ 𝑤∗ = 𝛼𝑖
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Soft Margin Hyperplane

For linearly separable case

Allow 𝜁 term to make data linearly separable

Width of margin can be determined by 
penalty parameter C

Subject to
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Python example of Soft Margin Hyperplane

C= 0.1

C= 100C= 1.0

Degree of “soft margin” determined by 
regularization factor C
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Kernel function

Polynomial Kernel : K(𝑥𝑖 , 𝑥𝑗)=(𝑥𝑖 ∙ 𝑥𝑗 + 1)p

Gaussian Kernel : K 𝑥𝑖 , 𝑥𝑗 = 𝑒
−

𝑥𝑖−𝑥𝑗
2

2𝜎2

RBF Kernel : K 𝑥𝑖 , 𝑥𝑗 =𝑒−𝛾(𝑥𝑖−𝑥𝑗)
2

Sigmoid kernel : K(𝑥𝑖 , 𝑥𝑗)=tanh(𝜂𝑥𝑖 ∙ 𝑥𝑗 + 𝑣)

Polynomial

RBF Kernel Function

Sigmoid Kernel Function

Basic Idea :
Input vector x∈ 𝑅𝑛 project to higher 
dimensional feature space

Hypothesis considered to be

For Kernel function K, each x,z∈K

Kernel function must obey following 
property
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Mercer’s Theorem 

Given a finite input space X = {𝑥1, 𝑥2… , 𝑥𝑛} and real-
valued function K=(𝐾(𝑥𝑖 ∙ 𝑥𝑗))𝑖,𝑗=1

𝑛

ඵ𝑔 𝑥 𝐾 𝑥, 𝑦 𝑔 𝑦 𝑑𝑥𝑑𝑦 ≥ 0

A positive constant function K(x,y)=c

Example

Condition of a function to be kernel

𝑔 𝑥 𝑐𝑔 𝑦 𝑑𝑥𝑑𝑦= c𝑔 𝑥 𝑑𝑥 𝑔 𝑦 𝑑𝑦 =c(𝑔 𝑥 𝑑𝑥)2

A symmetric continuous function

𝐾 ∶ 𝑎, 𝑏 × 𝑎, 𝑏 ՜ ℝ

K is positive semi-definite if and only if



𝑖=1

𝑛



𝑗=1

𝑛

𝐾(𝑥𝑖 , 𝑥𝑗)𝑐𝑖𝑐𝑗 ≥ 0

For all finite sequence of points 𝑥1, 𝑥2… , 𝑥𝑁
And all choice of real number 𝑐1, 𝑐2, . . , 𝑐𝑁

Associated to K is a linear operator on 
function defined by 

𝑇𝐾𝜑 𝑥 = න
𝑎

𝑏

𝐾 𝑥, 𝑠 𝜑 𝑠 𝑑𝑠

For Mercer’s theorem,  any symmetric feature that 
maps a feature space of x times x, it is square 
integrable on its domain and satisfies its integral.

Mercer’s condition

K 𝑥𝑖 , 𝑥𝑗 = 𝑒
−

𝑥𝑖−𝑥𝑗
2

2𝜎2

Gaussian kernel function

𝑒
−

1
2𝜎2

𝑥𝑖−𝑥𝑗
2
=𝑒

−𝑥𝑖
2−𝑥𝑗

2

2𝜎2 (1+
2𝑥𝑖𝑥𝑗
1!

+
(2𝑥𝑗𝑥𝑗)

2

2!
+⋯)

= 𝜙 𝑥𝑖
𝑇𝜙 𝑥𝑗
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Weakness of Support Vector Machine

• Excessive computation cost in large datasets because kernel matrix 
grow quadratic form with the size of data

• SVM designed to solve binary problems – multi-classification case 
are necessary to change as multiple binary classification problem.

• Difficult to get optimal separation hyperplane for an SVM trained 
with imbalance data.

 Including synthetic minority data to improve classification accuracy 
(Koknar-Tezel and Latecki 2009)

“Weighted” SVM algorithm to overcome imbalance data set (Du and 
Chen 2005)
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Python classification by Support Vector machine

Three species of IRIS

Source : https://scikit-learn.org/stable/modules/svm.html 15/20



Support Vector Machine with Imbalanced dataset

Get different Hyperplane by weighting imbalanced 
data.

Source : https://scikit-learn.org/stable/modules/svm.html
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SVM application to Volcano-seismicity classification

LP : Volcanic Long Period events (associated 
with resonance of fluid-filled crack)

VT : Volcano tectonic Earthquake 
(associated with brittle fracture of rock)

TC : Tectonic Earthquake

OT : Other signal (e.g. melting glacier, storm etc)

(Curilem et al. 2014)

Characterizing Different waveform features of LP and VT 
waveform for testing -> Auto-classification SVM
(Malfante et al. 2018)

Great Sitkin

Different Type of Signal from Great Sitkin
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Optimization algorithm

What is appropriate optimization algorithm for solving SVM?

First-Order Algorithm
- Gradient Descent
- Momentum
- Adagrad
- RMSProp

Second-Order Algorithm

- Newton’s method
- Secant Method
- Quasi-Newton Method

For Non-differential Object Function 

- Direct Algorithm
- Stochastic Algorithm
- Population Algorithm

Direct algorithm : Navigate the pattern search as they navigate 
the space using geometric shape or decision (e.g. pattern)

Stochastic Algorithm: Algorithm that make use of randomness of 
search procedure

Population Algorithm: Algorithm maintaining a pool of candidate 
solution are used sample, explore an optima. 
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Single layer Perceptron and compared to SVM

𝑥1 𝑥2 𝑥3 𝑥4

The output of the neuron is a linear combination of the inputs

𝑓 𝑥 = 𝜎(

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 + 𝑏)

Argument  X:= {x1,…xm}⊂ x (data)
Y:= {x1,…xm}⊂ {±1} (label)

Function(w,b) = Perceptron(X,Y)
initialize w,b=0
repeat

Pick (𝑥𝑖 , 𝑦𝑖) from data
if yi(w*xi+b)≤ 0 Then

𝑤′ = 𝑤 + 𝑦𝑖𝑥𝑖
𝑏′ = b + 𝑦𝑖

Until yi(w*xi+b) >0 for all i

Perceptron : Update classification for each 
iteration, different from SVM

Source : http://alex.smola.org/teaching/pune2007/pune_3.pdf

SVM : Get the optimal “hyperplane” 
between classification data. For 
perceptron, the classification cannot be 
optimal out of data  

Single-layer perceptron : Form of SVM?
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Summary

• Support Vector Machine is useful for learning method of classification

• It aims to get optimal hyperplane to classify data in feature space.

• Hyperplane between different category of data can be get from 
linearly separate case.

• Soft Margin of Hyperplane, Kernel trick(method) is used for more 
complex real-world data

• Appropriate optimization algorithm is needed for SVM and 
classification problem

• SVM can be interpreted as Single-layer perceptron
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