Does Size Matter?
 Universal Approximation and the Efficiency of Depth

Oscar I. Hernandez

Department of Mathematics \& Statistics University of Alaska Fairbanks

March 31, 2022

Goal

Given:

(1) $p: \mathbb{R}^{n} \rightarrow \mathbb{R}$ a multivariate polynomial of degree $d \in \mathbb{N}$
(2) $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ in C^{d} with $x_{0} \in \mathbb{R}$ satisfying $\left[\frac{d^{r} \sigma}{d x^{r}}\right]_{x_{0}} \neq 0$ for all $r \leq d$
(3) open box $(-R, R)^{n} \subset \mathbb{R}^{n}$ for some $R \geq 0$

Theorem (Rolnick and Tegmark [2017])

Let $m_{k}^{\varepsilon}(p)$ be the minimum of neurons in a depth-k network N satisfying $\|N-p\|_{\infty}<\varepsilon$ on $(-R, R)^{n}$. If $d>1$, then

$$
\lim _{\varepsilon \rightarrow 0} m_{d}^{\varepsilon}(p)<\lim _{\varepsilon \rightarrow 0} m_{1}^{\varepsilon}(p)<\infty
$$

Strategy

1) Approximate $\left.p_{2}(u, v)=u v .2\right)$ Replicate proof technique. 3) $\$ \$ \$$

Outline

(1) Goal
(2) Outline
(3) Multiplication

- Problem Architecture
- Solution Construction - Numerical Analysis
(4) Universal Approximation via Shallow Networks
- k-ary Multiplication
- Monomial of degree k
- Polynomials of degree k
- Continuous functions
(5) Deep Neural Networks
(6) References
(7) Q\&A

Problem Architecture

Theorem (Lin et al. [2017])
Given the bivariate monomial $p_{2}\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ and a tolerance $\varepsilon>0$, there is a shallow neural network N with 2 inputs, m hidden neurons, and 1 output such that $\left\|N-p_{2}\right\|_{\infty}<\varepsilon$ on $(-R, R)^{2}$. This requires $m=4$ exactly.

Strategy

1) Construct N such that $\left\|N-p_{2}\right\|_{\infty}<\varepsilon$ on $(-\varepsilon, \varepsilon)^{2}$. 2) Scale. 3) $\$ \$ \$$

Solution Construction: First Affine Transformation $A^{[1]}$

$$
\begin{aligned}
A^{[1]}\left(\left[\begin{array}{l}
u \\
v
\end{array}\right]\right) & =W^{[1]}\left[\begin{array}{l}
u \\
v
\end{array}\right]+b^{[1]} \\
& =\left[\begin{array}{ll}
+1 & +1 \\
-1 & -1 \\
+1 & -1 \\
-1 & +1
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
+u+v+0 \\
-u-v+0 \\
+u-v+0 \\
-u+v+0
\end{array}\right]
\end{aligned}
$$

Solution Construction: Activation $\vec{\sigma} \circ A^{[1]}$

$$
\begin{aligned}
\left(\vec{\sigma} \circ A^{[1]}\right)\left(\left[\begin{array}{l}
u \\
v
\end{array}\right]\right) & =\vec{\sigma}\left(\left[\begin{array}{ll}
+1 & +1 \\
-1 & -1 \\
+1 & -1 \\
-1 & +1
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
\sigma(+u+v) \\
\sigma(-u-v) \\
\sigma(+u-v) \\
\sigma(-u+v)
\end{array}\right]
\end{aligned}
$$

Solution Construction: $f=A^{[2]} \circ \vec{\sigma} \circ A^{[1]}$

$$
\begin{aligned}
f\left(\left[\begin{array}{l}
u \\
v
\end{array}\right]\right) & =\frac{1}{4 \sigma_{2}}\left[\begin{array}{llll}
+1 & +1 & -1 & -1
\end{array}\right] \vec{\sigma}\left(\left[\begin{array}{ll}
+1 & +1 \\
-1 & -1 \\
+1 & -1 \\
-1 & +1
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right)+[0] \\
& =\frac{\sigma(+u+v)+\sigma(-u-v)-\sigma(+u-v)-\sigma(-u+v)}{4 \sigma_{2}}
\end{aligned}
$$

Lemma

Then, f quartically approximates p as follows.

$$
|f(u, v)-u v| \in o\left(u^{2}+v^{2}\right) u v
$$

For any $\varepsilon>0$ in particular, if $|u|,|v|<\sqrt[4]{\varepsilon / 2}$ then $|f(u, v)-u v|<\varepsilon$.

Proof of Proposition

Proof.

Let $m(u, v)=f\left(\left[\begin{array}{l}u \\ v\end{array}\right]\right)$. By Taylor's theorem, $\exists\left\{\xi_{k}\right\}_{k=1}^{2^{2}}$ such that $4 m(u, v) \sigma_{2}=\sigma(u+v)+\sigma(-u-v)-\sigma(+u-v)-\sigma(-u+v)=$

$$
\begin{array}{cccc}
+\frac{\sigma_{0}}{0}(+u+v)^{0} & +\frac{\sigma_{0}}{\sigma_{0}}(-u-v)^{0} & -\frac{\sigma_{0}}{\sigma_{1}}(+u-v)^{0} & -\frac{\sigma_{0}}{\sigma_{1}}(-u+v)^{0} \\
+\frac{\sigma_{1}}{1}(+u+v)^{1} & +\frac{\sigma_{1}}{\sigma_{1}}(-u-v)^{1} & -\frac{\sigma_{1}}{\sigma_{2}}(+u-v)^{1} & -\frac{\sigma_{1}}{1}(-u+v)^{1} \\
+\frac{\sigma_{2}}{2}(+u+v)^{2} & +\frac{\sigma_{2}}{2}(-u-v)^{2} & -\frac{\sigma_{2}}{2}(+u-v)^{2} & -\frac{\sigma_{2}}{2}(-u+v)^{2} \\
+\frac{\sigma_{3}}{6}(+u+v)^{3} & +\frac{\sigma_{3}}{6}(-u-v)^{3} & -\frac{\sigma_{3}}{6}(+u-v)^{3} & -\frac{\sigma_{3}}{6}(-u+v)^{3} \\
++\frac{\sigma_{4}}{64}(+u+v)^{4} & +\frac{\sigma_{4}}{(24}(-u-v)^{4} & -\frac{\sigma_{4}}{4}(+u-v)^{4} & -\frac{\sigma_{4}}{44}(-u+v)^{4} \\
+\frac{\sigma^{(5)}\left(\xi_{1}\right)}{120}(+u+v)^{5} & +\frac{\left.\sigma^{(5)}()_{2}\right)}{120}(-u-v)^{5} & -\frac{\sigma^{(5)}\left(\xi_{3}\right)}{120}(+u-v)^{5} & -\frac{\sigma^{(5)}\left(\xi_{4}\right)}{120}(-u+v)^{5}
\end{array}
$$

$$
\begin{aligned}
m(u, v) & =\frac{1}{4 \sigma_{2}}\left[0+\frac{0}{1}+\frac{\sigma_{2}}{2}(8 u v)+\frac{0}{6}+\frac{\sigma_{4}}{24}\left(16 u^{3} v+16 u v^{3}\right)+\frac{4}{120} o\left((u+v)^{5}\right)\right] \\
& =0+\frac{4 \sigma_{2}}{4 \sigma_{2}}(u v)+\frac{\left(u^{2}+v^{2}\right) \sigma_{4}}{6 \sigma_{2}}(u v)+\frac{o\left((u+v)^{4}\right)}{30 \sigma_{2}} \\
& =u v\left[1+o\left(u^{2}+v^{2}\right)\right] \rightarrow u v \text { as }|u|,|v| \rightarrow 0
\end{aligned}
$$

Solution Construction: Scale

Let $R>0, \varepsilon>0$, and set $\lambda=\frac{\varepsilon / 2}{\max (R, 1)}$.
Given $x_{1}, x_{2} \in(-R, R)$, let $u=\lambda x_{1}, v=\lambda x_{2}$ so that $u, v \in(-\varepsilon, \varepsilon)$.

$$
\begin{aligned}
N\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right) & =f\left(\lambda\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right) / \lambda^{2} \\
& \left.=\frac{\lambda^{-2}}{4 \sigma_{2}}\left[\begin{array}{llll}
+1 & +1 & -1 & -1
\end{array}\right] \vec{\sigma}\left(\begin{array}{ll}
+1 & +1 \\
-1 & -1 \\
+1 & -1 \\
-1 & +1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right)+[0] \\
& =\frac{\sigma(+u+v)+\sigma(-u-v)-\sigma(+u-v)-\sigma(-u+v)}{4 \lambda^{2} \sigma_{2}} \\
& =m(u, v) / \lambda^{2}
\end{aligned}
$$

Solution Construction: Proof

Theorem (Lin et al. [2017])

Given $R>0$ and $\varepsilon>0$, there is a shallow neural net N with $m=2^{2}$ hidden neurons satisfying $\left|N\left(x_{1}, x_{2}\right)-x_{1} x_{2}\right|<\varepsilon$ for all $\left(x_{1}, x_{2}\right) \in(-R, R)^{2}$.

Proof.

Set $\lambda=\frac{\varepsilon / 2}{\max (R, 1)}$.
Given $x_{1}, x_{2} \in(-R, R)$, let $u=\lambda x_{1}$ and $v=\lambda x_{2}$ so that $u, v \in(-\varepsilon, \varepsilon)$.

$$
N\left(x_{1}, x_{2}\right)=m(u, v) / \lambda^{2} \rightarrow \frac{u}{\lambda} \frac{v}{\lambda}=x_{1} x_{2} .
$$

Numerical Analysis

k-ary Multiplication

Theorem (Lin et al. [2017])

Given the multivariate monomial $p_{n}(x)=\prod_{i=1}^{n} x_{i}$ and a tolerance $\varepsilon>0$, there is a shallow neural network N with n inputs, m hidden neurons, and 1 output such that $\left\|N-p_{n}\right\|_{\infty}<\varepsilon$ on $(-R, R)^{n}$.
This requires $m=2^{n}$ exactly.

Monomial of degree k

Corollary (Lin et al. [2017])

Given the multivariate monomial $p_{n}(x)=a \prod^{n} x_{i}$ and a tolerance $\varepsilon>0$, there is a shallow neural network N with n inputs, m hidden neurons, and 1 output such that $\left\|N-p_{n}\right\|_{\infty}<\varepsilon$ on $(-R, R)^{n}$.
This requires $m=2^{n}$ exactly.

Proof.

Let $N=A^{[2]} \circ \vec{\sigma} \circ A^{[1]}$ as above and let $A_{a}^{[2]}=a A^{[2]}$.

$$
N_{a}=A_{a}^{[2]} \circ \vec{\sigma} \circ A^{[1]}=a \cdot N \rightarrow a \prod_{i=1}^{n} x_{i}
$$

Polynomial of degree k

Theorem (Lin et al. [2017])

Given the multivariate polynomial $p(x)=\sum_{i=1}^{n} p_{i}(x)$ and a tolerance $\varepsilon>0$, there is a shallow neural network N with n inputs, m hidden neurons, and 1 output such that $\left\|N-p_{n}\right\|_{\infty}<\varepsilon$ on $(-R, R)^{n}$.

Proof.

Approximate monomial $p_{i}(\vec{x})=a_{i} \prod_{j=1}^{n} x_{j}^{n_{j}}$ with $N_{i}=A_{i}^{[2]} \circ \vec{\sigma} \circ A_{i}^{[1]}$.
Let $A^{[1,2]}=\sum_{i}^{n} A_{i}^{[1,2]}$.

$$
N=A^{[2]} \circ \vec{\sigma} \circ A^{[1]}=\sum_{i=1}^{n} N_{i} \rightarrow \sum_{i=1}^{n} p_{i}(\vec{x})=p(\vec{x})
$$

Universal Approximation Theorem

Theorem (Cybenko [1989])

Given the continuous function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a tolerance $\varepsilon>0$, there is a shallow neural network N with n inputs, m hidden neurons, and 1 output such that $\|N-f\|_{\infty}<\varepsilon$ on any $(-R, R)^{n}$. ${ }^{a}$
${ }^{a}$ Original theorem about any compact $K \subset \mathbb{R}^{n}$ follows from this.

Proof ($\varepsilon / 2$-argument via [Lin et al., 2017]).
Pick p_{d} such that $\left\|p_{d}-f\right\|_{\infty}<\varepsilon / 2$ on $[-R, R]^{n}$ via Stone-Weierstrass. Pick N such that $\left\|N-p_{d}\right\|_{\infty}<\varepsilon / 2$ on $(-R, R)^{n}$.

$$
\|N-f\|_{\infty} \leq\left\|N-p_{d}\right\|_{\infty}+\left\|p_{d}-f\right\|<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

It is clear from the construction of N that $\lim _{\varepsilon \rightarrow 0} m_{1}^{\varepsilon}\left(p_{d}\right)<\infty$.
Superior to [Cybenko, 1989] for which m grows as ε shrinks.

Asymptotic Depth Case

Theorem (Rolnick and Tegmark [2017])

$$
\lim _{\varepsilon \rightarrow 0} m_{k}^{\varepsilon}\left(\prod_{i=1}^{n} x_{i}\right)=\mathcal{O}\left(n^{(k-1) / n} \cdot 2^{n^{1 / k}}\right)
$$

References

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4):303-314, 1989. Henry W Lin, Max Tegmark, and David Rolnick. Why does deep and cheap learning work so well? Journal of Statistical Physics, 168(6): 1223-1247, 2017.
David Rolnick and Max Tegmark. The power of deeper networks for expressing natural functions. arXiv preprint arXiv:1705.05502, 2017.

Shallow Artificial Neural Network: Definition

Given $W=\left(w_{i j}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $b=\left(b_{i}\right) \in \mathbb{R}^{m}$, define $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by $A x=W x+b$. Example:

$$
A:\left[\begin{array}{l}
u \\
v
\end{array}\right] \mapsto\left[\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22} \\
w_{31} & w_{32} \\
w_{41} & w_{42}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]=\left[\begin{array}{l}
w_{11} u+w_{12} v+b_{1} \\
w_{21} u+w_{22} v+b_{2} \\
w_{31} u+w_{32} v+b_{3} \\
w_{41} u+w_{42} v+b_{4}
\end{array}\right]
$$

Given $\sigma: \mathbb{R} \rightarrow \mathbb{R}$, define $\vec{\sigma}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ by $(\vec{\sigma}(x))_{i}=\sigma\left(x_{i}\right)$
A "hidden" layer with m neurons is a composition $\vec{\sigma} \circ A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
A depth- k neural network is the pre-composition of A_{k+1} with k layers.
A shallow neural network is a depth-1 neural network.

Real k-ary Multiplication

(1) Enumerate $\left\{S_{j}\right\}_{j=1}^{2_{j}^{k}}=2^{[k]}$ and let $a_{i j}=s_{i}\left(S_{j}\right)=2\left(1-\chi S_{j}(i)\right)-1$
(2. Let $w_{j}=\frac{1}{2^{k} n!\sigma_{n}} \prod_{i=1}^{n} a_{i j}=\frac{(-1)^{\left|S_{j}\right|}}{2^{n} n!\sigma_{n}}$ and $f=\sum_{j=1}^{2^{m}} w_{j} \vec{\sigma}\left(\sum_{i=1}^{n} a_{i j} x_{i}\right)$
(3) If $p(x)$ lacks x_{1} then terms in Taylor expansion cancel.
(9) If $p(x)=\prod_{i=1}^{n} x_{i}$ then coefficients add to 1 .

