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Goal

Given:

1 p : Rn → R a multivariate polynomial of degree d ∈ N
2 σ : R → R in Cd with x0 ∈ R satisfying

[
d rσ
dx r

]
x0

̸= 0 for all r ≤ d

3 open box (−R,R)n ⊂ Rn for some R ≥ 0

Theorem (Rolnick and Tegmark [2017])

Let mε
k(p) be the minimum of neurons in a depth-k network N satisfying

||N − p||∞ < ε on (−R,R)n. If d > 1, then

lim
ε→0

mε
d(p) < lim

ε→0
mε

1(p) < ∞.

Strategy

1) Approximate p2(u, v) = uv . 2) Replicate proof technique. 3) $$$
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Problem Architecture

x1

x2

y1

Theorem (Lin et al. [2017])

Given the bivariate monomial p2(x1, x2) = x1x2 and a tolerance ε > 0,
there is a shallow neural network N with 2 inputs, m hidden neurons, and
1 output such that ||N − p2||∞ < ε on (−R,R)2. This requires m = 4
exactly.

Strategy

1) Construct N such that ||N − p2||∞ < ε on (−ε, ε)2. 2) Scale. 3) $$$
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Solution Construction: First Affine Transformation A[1]

A[1]

([
u
v

])
= W [1]

[
u
v

]
+ b[1]

=


+1 +1
−1 −1
+1 −1
−1 +1

[uv
]
+


0
0
0
0



=


+u + v + 0
−u − v + 0
+u − v + 0
−u + v + 0
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Solution Construction: Activation σ⃗ ◦ A[1]

(σ⃗ ◦ A[1])

([
u
v

])
= σ⃗



+1 +1
−1 −1
+1 −1
−1 +1

[uv
]
+


0
0
0
0




=


σ(+u + v)
σ(−u − v)
σ(+u − v)
σ(−u + v)
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Solution Construction: f = A[2] ◦ σ⃗ ◦ A[1]

f

([
u
v

])
=

1

4σ2

[
+1 +1 −1 −1

]
σ⃗



+1 +1
−1 −1
+1 −1
−1 +1

[uv
]
+


0
0
0
0


+

[
0
]

=
σ(+u + v) + σ(−u − v)− σ(+u − v)− σ(−u + v)

4σ2

Lemma

Then, f quartically approximates p as follows.

|f (u, v)− uv | ∈ o(u2 + v2)uv

For any ε > 0 in particular, if |u|, |v | < 4
√
ε/2 then |f (u, v)− uv | < ε.
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Proof of Proposition

Proof.

Let m(u, v) = f

([
u
v

])
. By Taylor’s theorem, ∃{ξk}2

2

k=1 such that

4m(u, v)σ2 = σ(u + v) + σ(−u − v)− σ(+u − v)− σ(−u + v) =

+σ0

1 (+u + v)0 +σ0

1 (−u − v)0 −σ0

1 (+u − v)0 −σ0

1 (−u + v)0

+σ1

1 (+u + v)1 +σ1

1 (−u − v)1 −σ1

1 (+u − v)1 −σ1

1 (−u + v)1

+σ2

2 (+u + v)2 +σ2

2 (−u − v)2 −σ2

2 (+u − v)2 −σ2

2 (−u + v)2

+σ3

6 (+u + v)3 +σ3

6 (−u − v)3 −σ3

6 (+u − v)3 −σ3

6 (−u + v)3

+σ4

24 (+u + v)4 +σ4

24 (−u − v)4 −σ4

24 (+u − v)4 −σ4

24 (−u + v)4

+σ(5)(ξ1)
120 (+u + v)5 +σ(5)(ξ2)

120 (−u − v)5 −σ(5)(ξ3)
120 (+u − v)5 −σ(5)(ξ4)

120 (−u + v)5

m(u, v) =
1

4σ2

[
0 +

0

1
+

σ2

2
(8uv) +

0

6
+

σ4

24
(16u3v + 16uv3) +

4

120
o
(
(u + v)5

)]
= 0 +

4σ2

4σ2
(uv) +

(u2 + v2)σ4

6σ2
(uv) +

o
(
(u + v)4

)
30σ2

= uv
[
1 + o(u2 + v2)

]
→ uv as |u|, |v | → 0
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Solution Construction: Scale

Let R > 0, ε > 0, and set λ = ε/2
max(R,1) .

Given x1, x2 ∈ (−R,R), let u = λx1, v = λx2 so that u, v ∈ (−ε, ε).

N

([
x1
x2

])
= f

(
λ

[
x1
x2

])
/λ2

=
λ−2

4σ2

[
+1 +1 −1 −1

]
σ⃗

λ


+1 +1
−1 −1
+1 −1
−1 +1

[x1x2
]
+


0
0
0
0


+

[
0
]

=
σ(+u + v) + σ(−u − v)− σ(+u − v)− σ(−u + v)

4λ2σ2

= m(u, v)/λ2
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Solution Construction: Proof

Theorem (Lin et al. [2017])

Given R > 0 and ε > 0, there is a shallow neural net N with m = 22

hidden neurons satisfying |N(x1, x2)− x1x2| < ε for all (x1, x2) ∈ (−R,R)2.

Proof.

Set λ = ε/2
max(R,1) .

Given x1, x2 ∈ (−R,R), let u = λx1 and v = λx2 so that u, v ∈ (−ε, ε).

N(x1, x2) = m(u, v)/λ2 → u

λ

v

λ
= x1x2.
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Numerical Analysis
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k-ary Multiplication

x1

x2

x3
y1

Theorem (Lin et al. [2017])

Given the multivariate monomial pn(x) =
n∏

i=1

xi and a tolerance ε > 0,

there is a shallow neural network N with n inputs, m hidden neurons, and
1 output such that ||N − pn||∞ < ε on (−R,R)n.
This requires m = 2n exactly.
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Monomial of degree k

Corollary (Lin et al. [2017])

Given the multivariate monomial pn(x) = a
n∏

i=1

xi and a tolerance ε > 0,

there is a shallow neural network N with n inputs, m hidden neurons, and
1 output such that ||N − pn||∞ < ε on (−R,R)n.
This requires m = 2n exactly.

Proof.

Let N = A[2] ◦ σ⃗ ◦ A[1] as above and let A
[2]
a = aA[2].

Na = A
[2]
a ◦ σ⃗ ◦ A[1] = a · N → a

n∏
i=1

xi
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Polynomial of degree k

Theorem (Lin et al. [2017])

Given the multivariate polynomial p(x) =
n∑

i=1

pi (x) and a tolerance ε > 0,

there is a shallow neural network N with n inputs, m hidden neurons, and
1 output such that ||N − pn||∞ < ε on (−R,R)n.

Proof.

Approximate monomial pi (x⃗) = ai

n∏
j=1

x
nj
j with Ni = A

[2]
i ◦ σ⃗ ◦ A[1]

i .

Let A[1,2] =
n∑
i

A
[1,2]
i .

N = A[2] ◦ σ⃗ ◦ A[1] =
n∑

i=1

Ni →
n∑

i=1

pi (x⃗) = p(x⃗)
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Universal Approximation Theorem

Theorem (Cybenko [1989])

Given the continuous function f : Rn → R and a tolerance ε > 0, there is
a shallow neural network N with n inputs, m hidden neurons, and 1 output
such that ||N − f ||∞ < ε on any (−R,R)n. a

aOriginal theorem about any compact K ⊂ Rn follows from this.

Proof (ε/2-argument via [Lin et al., 2017]).

Pick pd such that ||pd − f ||∞ < ε/2 on [−R,R]n via Stone-Weierstrass.
Pick N such that ||N − pd ||∞ < ε/2 on (−R,R)n.

||N − f ||∞ ≤ ||N − pd ||∞ + ||pd − f || < ε/2 + ε/2 = ε.

It is clear from the construction of N that lim
ε→0

mε
1(pd) < ∞.

Superior to [Cybenko, 1989] for which m grows as ε shrinks.
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Asymptotic Depth Case

Theorem (Rolnick and Tegmark [2017])

lim
ε→0

mε
k

(
n∏

i=1

xi

)
= O

(
n(k−1)/n · 2n1/k

)
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Shallow Artificial Neural Network: Definition

Given W = (wij) : Rn → Rm and b = (bi ) ∈ Rm, define A : Rn → Rm by
Ax = Wx + b. Example:

A :

[
u
v

]
7→


w11 w12

w21 w22

w31 w32

w41 w42

[uv
]
+


b1
b2
b3
b4

 =


w11u + w12v + b1
w21u + w22v + b2
w31u + w32v + b3
w41u + w42v + b4



Given σ : R → R, define σ⃗ : Rm → Rm by (σ⃗(x))i = σ(xi )

A “hidden” layer with m neurons is a composition σ⃗ ◦ A : Rn → Rm.

A depth-k neural network is the pre-composition of Ak+1 with k layers.

A shallow neural network is a depth-1 neural network.
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Real k-ary Multiplication

1 Enumerate {Sj}2
k

j=1 = 2[k] and let aij = si (Sj) = 2
(
1− χSj (i)

)
− 1

2 Let wj =
1

2kn!σn

n∏
i=1

aij =
(−1)|Sj |

2nn!σn
and f =

2m∑
j=1

wj σ⃗

(
n∑

i=1

aijxi

)
3 If p(x) lacks x1 then terms in Taylor expansion cancel.

4 If p(x) =
n∏

i=1

xi then coefficients add to 1.
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