
Online optimization
good ML training algorithms regret less

Ed Bueler

MATH 692 Mathematics for Machine Learning

17 March 2022

Ed Bueler (UAF) Online optimization 1 / 38

Outline

1 online optimization framework

2 regret

3 analysis of online gradient descent (OGD)

4 Adam’s regret

5 frameworks for ML training

Ed Bueler (UAF) Online optimization 2 / 38

my motivations

why is SGD so popular? is my algorithm better than yours?

it was easy to stumble upon Kingma & Ba (2014):

− 101000 citations; Google Scholar’s top-cited paper in 2020
− the Adam optimizer is the default for tensorflow, pytorch, . . .

Q. how do they analyze Adam and show that it is good?

Ed Bueler (UAF) Online optimization 3 / 38

https://www.tensorflow.org/tutorials/keras/classification
https://pytorch.org/docs/stable/optim.html

connecting to my earlier talk: training a neural net

forward pass through an artificial neural net (ANN) with L layers:

x{i} → → a[L] (supposed to be y{i})

output activations are a function of input and parameters:

a[L] = a[L](x{i}; p)

parameters p collect weights and biases: p = {W [`],b[`]} ∈ Rn

cost of one labeled pair (x{i}, y{i}):

C{i}(p) =
1
2

∥∥∥y{i} − a[L](x{i}; p)
∥∥∥2

2

training goal: find p so the costs C{i}(p) are small
Ed Bueler (UAF) Online optimization 4 / 38

notation (standardization and simplification)

θ = p is vector of parameters
(xi , yi) = (x{i}, y{i}) is a labeled pair
N is total size of training set

ci(θ) = 1
2

∥∥yi − a[L](xi ; θ)
∥∥2

2 = C{i}(p) is cost of one pair

− the detailed form of ci (θ) will not matter much

Ed Bueler (UAF) Online optimization 5 / 38

total cost versus online training

total cost over training set
original goal: minimize total (average) cost over fixed training set

1
N

N∑
i=1

ci(θ)

online training = sequence of cost objectives
assume infinite sequence of cost functionals:

ci(θ)

the basic online training method is clear: train the neural net
incrementally, a little for each ci

but what’s the online training goal?

Ed Bueler (UAF) Online optimization 6 / 38

online training algorithms

choose θ1 as the initial parameters iterate
an online training algorithm computes each new iterate θi+1

θi+1 is computed from cost functionals {c1, c2, . . . , ci} and
(parameter) iterates {θ1, θ2, . . . , θi}
key assumption: an online training algorithm does not use future
cost functionals in constructing θi+1:

θi+1 = F (c1, . . . , ci , θ1, . . . , θi)

Ed Bueler (UAF) Online optimization 7 / 38

online training algorithms: examples

online gradient descent (OGD) with learning rates ηi > 0:

θi+1 = θi − ηi∇ci(θi)

◦ probability is not needed, so jettison “stochastic”: SGD→ OGD

Adam (more later)
Adaline, Adadelta, Adagrad, RMSprop, mini-batching, dropout, . . .
◦ google search for buzzwords: tensorflow optimizers

follow the leader (more later)
(quasi-)Newton methods which use (approximate) 2nd derivatives

Ed Bueler (UAF) Online optimization 8 / 38

regret of an online algorithm

definition (Zinkevich, 2003; decision theory in 1980s?)
the regret of an online algorithm, at the k th training step, is

Rj =

j∑
i=1

ci(θi)−min
θ

j∑
i=1

ci(θ)

regret Rj is difference between algorithm’s result for the costs so
far and the best-possible cost from a single parameter setting

◦ best setting so far: θ∗j = argmin
θ

j∑
i=1

ci (θ)

negative regret is possible!
Rj > 0: the player regrets not choosing θ∗j

Ed Bueler (UAF) Online optimization 9 / 38

regret in game theory

treat the algorithm as a player and the online stream of cost
functionals ci as an adversary
the player chooses θi before knowing ci

the adversarial sequence {ci} is totally-uncontrolled

online convex game (Abernathy et al 2008)

for i = 1, . . . , j
player chooses θi
then adversary chooses ci

player suffers regret

Rj =

j∑
i=1

ci(θi)−min
θ

j∑
i=1

ci(θ)

Ed Bueler (UAF) Online optimization 10 / 38

convex sets

previous slide says “convex”; we need the definition

definition
a set K ⊂ Rn is convex if for all x , y ∈ K and 0 ≤ t ≤ 1,

t x + (1− t)y ∈ K

◦ line segment from
x to y is inside K

Ed Bueler (UAF) Online optimization 11 / 38

convex functions

convex sets and functions

definition
a function f : K → R is convex if for all x , y ∈ K and 0 ≤ t ≤ 1,

t f (x) + (1− t)f (y) ≥ f (t x + (1− t)y)

convex = concave up
for f : K → R to be convex, note K must be convex

Ed Bueler (UAF) Online optimization 12 / 38

convex optimization: a classical topic

definition
given a convex set K ⊂ Rn and a convex function f : K → R,

min
θ∈K

f (θ)

is a convex optimization problem

K is often described by equality and inequality constraints
note K = Rn is convex (unconstrained optimization)
SVM is convex optimization
actual ML training is often not convex (e.g. ANN)
I don’t know the answer yet:
for an ANN, when is ci(θ) = 1

2

∥∥yi − a[L](xi ; θ)
∥∥2

2 a convex function
on K = Rn?

Ed Bueler (UAF) Online optimization 13 / 38

convex optimization: a standard algorithm

to solve: min
θ∈K

f (θ)

assume K ⊂ Rn is closed and convex
− then each y ∈ Rn has a unique projection onto K , the closest point

in K to y :
ΠK (y) = argminx∈K ‖y − x‖2

assume f : K → R is differentiable and convex
assume learning rates (step sizes) ηi > 0

projected gradient descent

choose θ1
for i = 1,2, . . .

θi+1 = ΠK
(
θi − ηi∇f (θi)

)

Ed Bueler (UAF) Online optimization 14 / 38

online convex optimization

convex optimization is so 20th century . . . let’s go online!

definition
online convex optimization (programming):

fix a convex set K ⊂ Rn

assume a sequence of convex functions ci : K → R
an algorithm for generating θi+1 ∈ K from previous ci , θi

Ed Bueler (UAF) Online optimization 15 / 38

the online goal is small regret

the goal of an online algorithm is slowly-growing regret

Rj =

j∑
i=1

ci(θi)︸ ︷︷ ︸
online alg. result

− min
θ

j∑
i=1

ci(θ)︸ ︷︷ ︸
offline result

Zinkevich (2003), regarding a regret analysis: We make no
distributional assumptions about the convex cost functions. . . . We
cannot hope to choose a point θi that minimizes ci , because ci can be
anything. Instead we try to minimize regret. . . . If the sequence of
cost functions {ci} is relatively stationary, then an online algorithm can
learn what the cost functions will look like in the future. If the sequence
of cost functions varies drastically, then the offline algorithm will not be
able to take advantage of this because it selects a single θ.

Ed Bueler (UAF) Online optimization 16 / 38

regret bounds

the online optimization framework evaluates an ML training
algorithm via a regret bound:
− how fast does Rj grow?

regret bounds are informative about algorithms
− what properties of the objectives ci determine the bound?
− what algorithmic settings determine the bound?

we need an example!

Ed Bueler (UAF) Online optimization 17 / 38

logarithmic OGD regret bound: Rj = O(log j)

online gradient descent (OGD):

θi+1 = ΠK
(
θi − ηi∇ci(θi)

)
assume well-behaved costs ci : smooth, strictly-convex

theorem (Hazan et al., 2007)

Suppose the ci are uniformly strictly convex: ∇2ci � H > 0. Compute
iterates θ1, . . . , θj from OGD. Let G = maxi=1,...,j ‖∇ci(θi)‖.

If ηi =
1

i H
then Rj ≤

G2

2H
(1 + log j).

Ed Bueler (UAF) Online optimization 18 / 38

sketch of Hazan proof

detailed proof in extra slides at end

proof sketch:
Taylor expand ci(θ

∗) from basepoint θi , to 2nd order.
Use Hessian lower bound to control ci(θi)− ci(θ

∗) in terms of
∇ci(θi)

>(θi − θ∗) and ‖θ∗ − θi‖2.
OGD bounds ∇ci(θi)

>(θi − θ∗) by Pythagorean-ish argument.

Use ηi = 1
iH and telescoping to get 2Rj ≤

G2

H

j∑
i=1

1
i
.

Integral test gives 2Rj ≤
G2

H
(1 + log j).

Ed Bueler (UAF) Online optimization 19 / 38

square root OGD regret bound: Rj = O(
√

j)

∇2ci � H > 0 (strictly convex) is too strong
− also, ηi = 1

i H depends on H, typically unknown

we now allow ∇2ci = 0, so we need to assume K is bounded
− ci (θ) could be linear in θ

theorem (Zinkevich, 2003)
Suppose K ⊂ Rn is closed, convex, and bounded with diameter dK .
Suppose each ci : K → R is differentiable and convex. Compute
iterates θ1, . . . , θj from OGD. Let G = maxi=1,...,j ‖∇ci(θi)‖.

If ηi =
1√
i

then Rj ≤

(
d2

K
2

+ G2

)√
j − G2

2
.

Ed Bueler (UAF) Online optimization 20 / 38

sketch of Zinkevich proof

detailed proof in extra slides at end

proof sketch:
Replace ci by linear functions with same gradients: c̃i(θ) = g>i θ
where gi = ∇ci(θi).

Convexity of ci shows R̃j =

j∑
i=1

g>i (θi − θ∗) ≥ Rj . (Regret increases.)

OGD bounds g>i (θi − θ∗) by Pythagorean-ish argument.

Use telescoping to get 2R̃j ≤
d2

K
ηj

+ G2
j∑

i=1

ηi

Choose ηi = i−p and use integral test.
p = 0.5 gives the slowest-growing bound.

Ed Bueler (UAF) Online optimization 21 / 38

OGD average regret goes to zero

corollary
under either hypothesis, the average regret of OGD goes to zero:

lim
j→∞

Rj

j
= 0,

equivalently, average cost converges to its optimal value:

lim
j→∞

1
j

j∑
i=1

ci(θi) = lim
j→∞

min
θ

1
j

j∑
i=1

ci(θ)

explains why OGD=SGD is a good ML training algorithm?
both proofs used a learning rate schedule with ηj → 0
neither regret bound proof actually required θ∗j to be optimal!
apparently, some convexity is needed?

Ed Bueler (UAF) Online optimization 22 / 38

other algorithms: follow the leader

an example showing O(
√

j) regret bound is nontrivial!
“follow the leader” is obvious and old (1957?)

follow the leader (FTL)
choose θ1
for i = 1,2, . . .

θi+1 = argmin
i∑

`=1

c`(θ)

FTL has no sub-linear regret bound:
Rj

j
9 0

− concrete example in notes by M. Razaviyayn1; ci (θ) are linear and
Zinkevich argument for OGD applies

lesson: don’t try too hard to optimize the ci you already know!
1https://cpb-us-e1.wpmucdn.com/sites.usc.edu/dist/3/137/files/2017/02/lec24-

2bywoz5.pdf
Ed Bueler (UAF) Online optimization 23 / 38

https://cpb-us-e1.wpmucdn.com/sites.usc.edu/dist/3/137/files/2017/02/lec24-2bywoz5.pdf

other algorithms: quasi-Newton

Hazan et al. (2007) also propose a online Newton step (ONS)
algorithm
actually a quasi-Newton method because it constructs an
approximation to the Hessian on the fly
− compare L-BFGS etc.

theorem (Hazan et al. 2007)
ONS has Rj = O(log j) if the ci are α-exp-concave

α-exp-concave ⊃ strictly-convex
Hazan (2007) shows ONS is follow the approximate leader

Ed Bueler (UAF) Online optimization 24 / 38

Adam algorithm

Adam (Kingma & Ba, 2014)

defaults: α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8

given: θ1
m0 ← 0, v0 ← 0
for i = 1,2, . . .

gi = ∇ci(θi)
mi = β1mi−1 + (1− β1)gi (1st moment vector)
vi = β2vi−1 + (1− β2)g2

i (2nd moment vector)
αi = α(1− β i

2)1/2/(1− β i
1) (bias-corrected step)

θi+1 = θi − αimi/(
√

vi + ε)

first-order optimization like OGD, but estimates 2nd moment
no learning rate schedule (ηi) needed!
θ updates are invariant to scaling of ci

performs “step-size annealing”

Ed Bueler (UAF) Online optimization 25 / 38

Adam results

99% of Kingma & Ba (2014) readers see above results graphs
and are happy?

Ed Bueler (UAF) Online optimization 26 / 38

Adam’s regret bound

Kingma & Ba (2014): We analyze the convergence of Adam using the
online learning framework proposed in (Zinkevich, 2003). . . . Since the
nature of the [cost function] sequence is unknown in advance, we
evaluate the algorithm using the regret . . .

theorem

Compute iterates θ1, . . . , θj from Adam. Then Rj = O(
√

j).

O(
√

j) is the same as Zinkevich’s bound, but Adam’s constants
are better, especially for θ ∈ Rd with large d
Reddi et al. (2019):
− construct example where Rj

j 9 0 for Adam!
− propose AMSGrad algorithm
− actually prove Rj = O(

√
j) for AMSGrad . . . it seems

Ed Bueler (UAF) Online optimization 27 / 38

Adam’s regret bound

Kingma & Ba (2014): We analyze the convergence of Adam using the
online learning framework proposed in (Zinkevich, 2003). . . . Since the
nature of the [cost function] sequence is unknown in advance, we
evaluate the algorithm using the regret . . .

we regret to inform you . . .

Compute iterates θ1, . . . , θj from Adam. Then Rj 6= O(
√

j).

O(
√

j) is the same as Zinkevich’s bound, but Adam’s constants
are better, especially for θ ∈ Rd with large d
Reddi et al. (2019):
− construct example where Rj

j 9 0 for Adam!
− propose AMSGrad algorithm
− actually prove Rj = O(

√
j) for AMSGrad . . . it seems

Ed Bueler (UAF) Online optimization 27 / 38

alternative framework: empirical risk

the Deep Learning book (Chapter 8), for example, tells you that
ML optimization is special because the data is stochastic

definition
the risk of an ANN parameter setting is the expected cost over an
assumed training data distribution

− typically assumes each (xi , yi) is an independent sample

but you don’t tend to know the distribution, so . . .

definition
the empirical risk of an ANN parameter setting is the average cost over
the training data set

− same as maximum likelihood estimation in many cases

Ed Bueler (UAF) Online optimization 28 / 38

the 5 frameworks for ML training optimization

it seems ML optimization is portrayed in 5 different ways:

1. risk = find parameters which minimize expected cost over assumed
distribution for training data

2. empirical risk = find parameters which minimize sample mean
over training data

3. maximum likelihood estimation = find parameters which
maximize assumed distribution (e.g. exp of negative cost)

4. naive optimization = find parameters which minimize average cost
of training data

5. online regret = find an algorithm θi+1 = f (c1, . . . , ci) which has
slow-growing regret regardless of training data distribution

typically, 1 is only notional
− the training data distribution is unknown

2,3,4 are the same goal once you remove probabilistic edifice
only 5 aligns with the algorithm designer’s concerns
− 5 is meta-optimization

Ed Bueler (UAF) Online optimization 29 / 38

the 5 frameworks: formulas

1. risk:
min
θ

E[c(θ)] = min
θ

∫
{all (x ,y)}

c(θ; x , y) dpdata

2. empirical risk (Deep Learning book)
3. = maximum likelihood estimation
4. = optimization (Higham & Higham, 2019):

min
θ

1
j

j∑
i=1

ci(θ)

5. online regret:

min
alg. for θi+1

 j∑
i=1

ci(θi)−min
θ

j∑
i=1

ci(θ)

Ed Bueler (UAF) Online optimization 30 / 38

summary: why online regret bounds?

regret bounds are rigorous properties of ML-training-suitable,
i.e. online, minimization algorithms
− the ML community has adopted this way of analyzing algorithms

quantitative regret bounds expose performance differences
− between algorithms (e.g. FTL vs OGD vs Adam vs AMSGrad)
− between cost-function classes (convex vs strictly-convex vs α-exp)

regret bounds reveal how to set learning rates
− compare ηi in Hazan, Zinkevich, Adam, AMSGrad proofs

analysis of regret avoids probability
− avoid distributional assumptions about the cost functions
− avoid risk, empirical risk, MLE, Bayes, . . . when you really don’t

know probabilities for training data anyway

analyzing regret is very 21st century!

Ed Bueler (UAF) Online optimization 31 / 38

online optimization references

J. D. Abernathy, P. Bartlett, A. Rakhlin, and A. Tewari (2008). Optimal strategies
and minimax lower bounds for online convex games, UC Berkeley
Tech. Rep. UCB/EECS-2008-19
− regret in game context

E. Hazan, A. Agarwal, & S. Kale (2007). Logarithmic regret algorithms for online
convex optimization. Machine Learning, 69(2), 169-192
− O(log j) regret bounds for positive definite Hessians, and for Newton algorithms

D. P. Kingma & J. Ba (2014). Adam: A method for stochastic optimization,
preprint arXiv:1412.6980.
− claims O(

√
j) regret bound

S. J. Reddi, S. Kale, & S. Kumar (2019). On the convergence of Adam and
beyond, preprint arXiv:1904.09237.
− debunks Kingma & Ba (2014) regret bound proof

− Adam
replace with→ AMSGrad

M. Zinkevich (2003). Online convex programming and generalized infinitesimal
gradient ascent, Proceedings of the 20th International Conference on Machine
Learning, 928-936
− introduced regret
− O(

√
j) regret bound of OGD

Ed Bueler (UAF) Online optimization 32 / 38

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-19.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-19.pdf
https://link.springer.com/content/pdf/10.1007/s10994-007-5016-8.pdf
https://link.springer.com/content/pdf/10.1007/s10994-007-5016-8.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1904.09237
https://arxiv.org/abs/1904.09237
https://www.aaai.org/Papers/ICML/2003/ICML03-120.pdf
https://www.aaai.org/Papers/ICML/2003/ICML03-120.pdf

additional references

L. Bottou, Online algorithms and stochastic approximations. In D. Saad, ed.,
Online Learning and Neural Networks, Cambridge University Press, 1998
− first sentence:

Almost all of the early work on Learning Systems focused on online algorithms
(Hebb, 1949; Rosenblatt, 1957; Widrow and Hoff, 1960; Amari, 1967; ...)

− regret is not mentioned

I. Goodfellow, Y. Bengio, & A. Courville, Deep Learning. MIT Press, 2016
− Chapter 8 addresses empirical risk
− online optimization and regret is not mentioned

Ed Bueler (UAF) Online optimization 33 / 38

http://leon.bottou.org/papers/bottou-98x
https://www.deeplearningbook.org/

extra: Hazan proof

proof: Let gi = ∇ci(θi) and θ∗ = θ∗j . Taylor and strict-convexity give

ci(θ
∗) = ci(θi) + g>i (θ∗ − θi) +

1
2

(θ∗ − θi)
>∇2ci(θ

∗ − θi)

≥ ci(θi) + g>i (θ∗ − θi) +
H
2
‖θ∗ − θi‖2

so 2
(
ci(θi)− ci(θ

∗)
)
≤ 2g>i (θi − θ∗)− H‖θ∗ − θi‖2 for each i .

On the other hand, OGD, a projection property, and convexity give

‖θi+1 − θ∗‖2 = ‖ΠK (θi − ηigi)− θ∗‖2 ≤ ‖θi − ηigi − θ∗‖2

≤ ‖θi − θ∗‖2 − 2ηig>i (θi − θ∗) + η2
i ‖gi‖2

so 2g>i (θi − θ∗) ≤
1
ηi

(
‖θi − θ∗‖2 − ‖θi+1 − θ∗‖2

)
+ ηiG2 for each i .

Ed Bueler (UAF) Online optimization 34 / 38

extra: Hazan proof cont.

Thus since 1/ηi = iH,

2Rj =

j∑
i=1

2
(
ci(θi)− ci(θ

∗)
)
≤

j∑
i=1

2g>i (θi − θ∗)− H
j∑

i=1

‖θ∗ − θi‖2

≤
j∑

i=1

1
ηi

(
‖θi − θ∗‖2 − ‖θi+1 − θ∗‖2

)
+ G2

j∑
i=1

ηi − H
j∑

i=1

‖θ∗ − θi‖2

=

j∑
i=1

iH
(
‖θi − θ∗‖2 − ‖θi+1 − θ∗‖2

)
+

G2

H

j∑
i=1

1
i
− H

j∑
i=1

‖θ∗ − θi‖2

=

j∑
i=1

(i − 1)H‖θi − θ∗‖2 −
j∑

i=1

iH‖θi+1 − θ∗‖2 +
G2

H

j∑
i=1

1
i

= −jH‖θj+1 − θ∗‖2 +
G2

H

j∑
i=1

1
i
≤ 0 +

G2

H
(1 + log j) .

Ed Bueler (UAF) Online optimization 35 / 38

extra: Zinkevich proof

the per-iterate regret increases if we replace ci by a linear function

Lemma: Suppose ci(θ) is convex. For θi , θ
∗ ∈ K , if gi = ∇ci(θi) then

ci(θi)− ci(θ
∗) ≤ g>i (θi − θ∗).

proof: By convexity, ci(θ
∗) ≥ ci(θi) + g>i (θ∗ − θi).

now we can prove the theorem

proof: As in Hazan, by OGD and projection,

‖θi+1 − θ∗‖2 = ‖ΠK (θi − ηigi)− θ∗‖2 ≤ ‖θi − ηigi − θ∗‖2

≤ ‖θi − θ∗‖2 − 2ηig>i (θi − θ∗) + η2
i ‖gi‖2

so 2g>i (θi − θ∗) ≤
1
ηi

(
‖θi − θ∗‖2 − ‖θi+1 − θ∗‖2

)
+ ηiG2 for each i .

Ed Bueler (UAF) Online optimization 36 / 38

extra: Zinkevich proof cont.

Thus, assuming ηi is decreasing and nonnegative,

2Rj =

j∑
i=1

2 (ci(θi)− ci(θ
∗)) ≤

j∑
i=1

2g>i (θi − θ∗)

≤
j∑

i=1

1
ηi

(
‖θi − θ∗‖2 − ‖θi+1 − θ∗‖2

)
+ G2

j∑
i=1

ηi

≤ 1
η1
‖θ1 − θ∗‖2 +

j∑
i=2

(
1
ηi
− 1
ηi−1

)
‖θi − θ∗‖2

− 1
ηj+1
‖θj+1 − θ∗‖2 + G2

j∑
i=1

ηi

≤ d2
K

 1
η1

+

j∑
i=2

(
1
ηi
− 1
ηi−1

)− 0 + G2
j∑

i=1

ηi

Ed Bueler (UAF) Online optimization 37 / 38

extra: Zinkevich proof cont. cont.

By telescoping,

2Rj ≤
d2

K
ηj

+ G2
j∑

i=1

ηi

Substitute ηi = i−p and use integral test:

2Rj ≤ d2
K jp + G2

j∑
i=1

i−p ≤ d2
K jp + G2

(
1 +

∫ j

1
x−p dx

)

≤ d2
K jp + G2

(
1 +

j1−p − 1
1− p

)
Using p = 0.5 balances powers for smallest growth rate:

2Rj ≤ d2
K

√
j + G2

(
1 + 2(

√
j − 1)

)
Rearrange to Rj ≤

(
d2

K
2

+ G2

)√
j − G2

2
.

Ed Bueler (UAF) Online optimization 38 / 38

	online optimization framework
	regret
	analysis of online gradient descent (OGD)
	Adam's regret
	frameworks for ML training

