Getting started on machine learning
 with one little artificial neural net

Ed Bueler

MATH 692 Mathematics for Machine Learning
UAF
13 January
20 January

participant-driven seminar logistics

- sign-up sheet!
- in-person or hybrid?
- is this classroom adequate?
- what will be the topics?
- are there out-of-bounds topics?
- who is volunteering to talk, and when?
- my existing webpages ... improvements?
o bueler.github.io/M692S22
- github.com/bueler/ml-seminar

today's talk

- my topic: how this \downarrow neural network does this \downarrow classification task

- an example from this \downarrow paper:

HH19 = C. F. Higham \& D. J. Higham (2019). Deep learning: An introduction for applied mathematicians. SIAM Review, 61(4), 860-891

goal for today

- know the meanings of some machine learning (ML) language:

artificial neuron	activation function weight matrix
bias vector training back-propagation	

- which standard mathematical concept(s) match these buzzwords?

big caveat

- I am no expert on what I am talking about here
- many in the room know more than me
- I volunteered to give one intro talk, that's all!

Outline

(1) a single artificial neuron
(2) forward through a neural net
(3) training is optimization
4. backward through a neural net
(5) running the codes yourself
(6) future topics

artificial neuron $=$ nonlinear-ized inner product

- given (column) vectors $v, w \in \mathbb{R}^{n}$
- recall inner product:

$$
\langle w, v\rangle=w^{\top} v=\sum_{j=1}^{n} w_{j} v_{j}
$$

- apply a nonlinear function $\sigma: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}:$

$$
a=\sigma\left(\sum_{j=1}^{n} w_{j} v_{j}\right) \in \mathbb{R}^{1}
$$

- detail: add a bias $b \in \mathbb{R}^{1}$
- that's it! an artificial neuror

artificial neuron $=$ nonlinear-ized inner product

- given (column) vectors $v, w \in \mathbb{R}^{n}$
- recall inner product:

$$
\langle w, v\rangle=w^{\top} v=\sum_{j=1}^{n} w_{j} v_{j}
$$

- apply a nonlinear function $\sigma: \mathbb{R}^{1} \rightarrow \mathbb{R}^{1}:$

$$
a=\sigma\left(\sum_{j=1}^{n} w_{j} v_{j}+b\right) \in \mathbb{R}^{1}
$$

- detail: add a bias $b \in \mathbb{R}^{1}$
- that's it! an artificial neuron

neuron roles

- v is input
- weights w and biases b are parameters
- they need training
- the activation function σ is fixed
- the output a is the activation of the neuron

$$
a=\sigma\left(\sum_{j=1}^{n} w_{j} v_{j}+b\right)
$$

nonlinear activation function

sigmoid

ReLU

- σ is the activation function
- an increasing scalar function with bounded derivative
- some possibilities:
- sigmoid, e.g. $\quad \sigma(z)=\frac{1}{1+e^{-z}}$
- rectified linear unit (ReLU), $\sigma(z)= \begin{cases}z, & z>0 \\ 0, & z \leq 0\end{cases}$

a trained neuron

- a trained neuron has known parameters w, b
- then $a: \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ is a known function:

$$
a=a(v)
$$

- similar cost to inner product
- backward stable
- one might write $a(v ; w, b)$ to make
 dependence on parameters clear

history and naming

- Rosenblatt (1958): from biological motivation, proposes a perceptron, a single artificial neuron with binary output:

$$
\sigma(z)= \begin{cases}1, & z>0 \\ 0, & z \leq 0\end{cases}
$$

- with learning algorithm
- Minsky \& Papert (1969): a single layer of perceptrons cannot even learn the XOR function!
- single layer perceptrons are linear separators
- support vector machines are perceptrons of optimal stability
- feedforward artificial neural networks (ANN), the next topic, are sometimes called multilayer perceptrons
- ... which ignores activation function details

Outline

(1) a single artificial neuron
(2) forward through a neural net
(3) training is optimization
4) backward through a neural net
(5) running the codes yourself

6 future topics

feed-forward networks

- considering only feed-forward networks in this talk
- edges connect consecutive layers, in order
- in ML language: feed-forward versus recurrent
- in graph language: "feed-forward network" = connected, directed acyclic graph which is equal to its own transitive reduction ...?

network notation

- notation from HH 19
- n_{ℓ} is number of neurons in layer $\ell=1, \ldots, L$
- $\ell=1$ is input layer
- input values are first-layer activations: $x=a^{[1]} \in \mathbb{R}^{n_{1}}$
- $\ell=L$ is output layer
- output values are final-layer activations: $y=a^{[L]} \in \mathbb{R}^{n_{L}}$
- activations in layer ℓ form a vector $a^{[\ell]} \in \mathbb{R}^{n_{\ell}}$
- $a_{j}^{[\ell]}$ is activation of neuron j in layer ℓ

weight notation

- weight $w_{j k}^{[l]}$ on the edge from neuron $a_{k}^{[\ell-1]}$ to neuron $a_{j}^{[l]}$
- thus

$$
a_{j}^{[\ell]}=\sigma\left(\sum_{k=1}^{n_{\ell-1}} w_{j k}^{[\ell]} a_{k}^{[\ell-1]}+b_{j}\right)
$$

- which suggests matrix-vector multiplication!

weight notation using vectors and matrices

- one (row) vector of weights for each neuron
- the inputs to the neurons in a layer are weighted by a matrix:

$$
W^{[\ell]}=(\text { weights into layer } \ell)=\left[w_{j k}^{[\ell]}\right]
$$

- $W^{[\ell]}$ is $n_{\ell} \times n_{\ell-1}$
- assuming σ applied entrywise:

$$
a^{[\ell]}=\sigma\left(W^{[\ell]} a^{[\ell-1]}+b^{[\ell]}\right)
$$

- bias vector $b^{[l]} \in \mathbb{R}^{n_{l}}$

forward pass = nonlinear-ized matrix multiplication

- for this small $L=4$ network:

$$
\begin{aligned}
y=a^{[4]} & =\sigma\left(W^{[4]} a^{[3]}+b^{[4]}\right)=\ldots \\
& =\sigma\left(W^{[4]} \sigma\left(W^{[3]} \sigma\left(W^{[2]} x+b^{[2]}\right)+b^{[3]}\right)+b^{[4]}\right)
\end{aligned}
$$

- over-simplified: $\sigma(z)=z$ and $b^{[\ell]}=0$ implies $y=W^{[4]} W^{[3]} W^{[2]} X$
- feed-forward network = nonlinear- \& affine-ized matrix product

forward-pass neural network formulas

- compute from input $x=a^{[1]}$ to output $y=a^{[L]}$ by layers:

$$
a^{[\ell]}=\sigma\left(W^{[\ell]} a^{[\ell-1]}+b^{[\ell]}\right) \quad \text { for } \ell=2,3, \ldots, L
$$

- equation (3.2) in HH19
- thus a forward pass is an obvious loop:

$$
\begin{aligned}
& \text { FORWARD }(x): \\
& \begin{array}{l}
a^{[1]}=x \\
\text { for } \ell=2,3, \ldots, L: \\
z^{[\ell]}=W^{[\ell]} a^{[\ell-1]}+b^{[\ell]} \\
a^{[\ell]}=\sigma\left(z^{[\ell]}\right) \\
\text { return } y=a^{[L]}
\end{array}
\end{aligned}
$$

- $\left\{W^{[l]}\right\}$ and $\left\{b^{[l]}\right\}$ are stored in some data structure
- $\sigma(z)$ is implemented entrywise

forward-pass computation work model (minor point)

- work = number of floating-point operations
- work at layer ℓ :

$$
2 n^{[\ell-1]} n^{[\ell]}+O\left(n^{[\ell]}\right)=O\left(n^{[\ell-1]} n^{[\ell]}\right)
$$

- using big-O in the " $n \rightarrow \infty$ " limit of big layers
- evaluating activation functions is cheap
- the work at one layer is basically just a matrix-vector product
- the total forward-pass work in an L-layer network is asymptotically the same as L matrix-vector products:

$$
\sum_{\ell=2}^{L} O\left(n^{[\ell-1]} n^{[\ell]}\right)=O\left(L n_{\max }^{2}\right)
$$

- note: a forward pass is easily computed by GPU hardware
- versus solving linear systems ...

Outline

(1) a single artificial neuron
(2) forward through a neural net
(3) training is optimization
4) backward through a neural net
(5) running the codes yourself

6 future topics

training is a biologically-motivated procedure

- imagine teaching your dog to read numbers 1,2,3:

$$
\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3
\end{array}
$$

- example training procedure:
(1) randomly present one image of a digit from above

(2) if dog barks correct number of times then gets treat
bark! bark!

(3) otherwise move on to next image

training yields persistant changes to brain

- biological learning can last from hours to decades
- something permanent/persistent changes within the brain
- but neuron excitation is electrical (activation is temporary),
- and neuron count is relatively fixed
- training yields chemical or morpological changes in connections between neurons, especially the synapses where the axon connects to another neuron's dendrite

artificial neurons as a model of real neurons

- but biological realism is not needed for machine learning!
- we use a simplified artificial neuron:

- this model is merely a formula: $\quad a=\sigma\left(\sum_{k=1}^{n} w_{k} v_{k}+b\right)$
- however, training needs to make "permanent" changes in the weights w_{k} and biases b
- after training, forward passes are the network's "learned behavior"

how does training work?

- so, how does training work in artificial neural networks?
- only considering supervised training here
- given: N pieces of labeled data (pairs)

$$
\left(x^{\{i\}}, y^{\{i\}}\right) \quad \text { for } i=1, \ldots, N
$$

- $x^{\{i\}} \in \mathbb{R}^{n_{1}}$ are the data
- $y^{\{i\}} \in \mathbb{R}^{n_{L}}$ are the labels
- in a classification task, the $y^{\{i\}}$ only take on finitely-many values
- observation: the labeled data determine the number of neurons in the first and last layers

example (classification task)

- example classification task data $\left(x^{\{i\}}, y^{\{i\}}\right)$ in one figure

- $N=10$
- marker coordinates give $x^{\{i\}} \in[0,1]^{2}$
- marker type gives $y^{\{i\}}$:

$$
O: y^{\{i\}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \times: y^{\{i\}}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- a neural net for this data must have $n_{1}=n_{L}=2$:
- ignore shading for now...

a supervised training cost functional

- supervised training means choosing the weights $W^{[\ell]}$ and biases $b^{[\ell]}$, in all the layers, so as to approximately minimize the average misfit between the the network output from input data vector $x^{\{i\}}$ and the corresponding label vector $y^{\{i\}}$
- using the squared 2 -norm for the misfit, this is a formula:

$$
\text { Cost }=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{2}\left\|y^{\{i\}}-a^{[L]}\left(x^{\{i\}}\right)\right\|_{2}^{2}
$$

- $a^{[L]}\left(x^{\{i\}}\right)=$ output-layer activation from forward pass with input $x^{\{i\}}$
- the Cost is a scalar-valued function (functional) of the weights and biases

better training notation

- let's give all the parameters a single-letter name:

$$
p=\left\{W^{[2]}, W^{[3]}, \ldots, W^{[L]}, b^{[2]}, b^{[3]}, \ldots, b^{[L]}\right\} \in \mathbb{R}^{S}
$$

- p collects all weight matrices and biases into one big column vector
- define the cost (misfit) of the network for one data pair:

$$
C^{\{i\}}(p)=\frac{1}{2}\left\|y^{\{i\}}-a^{[L]}\left(x^{\{i\}} ; p\right)\right\|_{2}^{2}
$$

- key idea:

The output from a forward pass through the network, namely $a^{[L]}\left(x^{\{i\}} ; p\right)$, depends both on the input data $x^{\{i\}}$ and all the weights and biases p. We emphasize that the cost of one data pair is a function of p : $C^{\{i\}}(p)$.

cost functional $=$ objective $=$ average misfit

- now define a total cost functional, or objective, $C(p)$
- $C(p)$ is the average misfit over all the labeled data:

$$
\begin{aligned}
C(p) & =\frac{1}{N} \sum_{i=1}^{N} C^{\{i\}}(p) \\
& =\frac{1}{2 N} \sum_{i=1}^{N}\left\|y^{\{i\}}-a^{[L]}\left(x^{\{i\}} ; p\right)\right\|_{2}^{2}
\end{aligned}
$$

training $=$ nonlinear least-squares optimization

- compare

$$
C(p)=\frac{1}{2 N} \sum_{i=1}^{N}\left\|y^{\{i\}}-a^{[L]}\left(x^{\{i\}} ; p\right)\right\|_{2}^{2}
$$

to "nonlinear least-squares" in a standard optimization textbook (Nocedal \& Wright, 2006; Chapter 10):

In least-squares problems, the objective function f has the following special form:

$$
f(x)=\frac{1}{2} \sum_{j=1}^{m} r_{j}^{2}(x),
$$

where each r_{j} is a smooth function from \mathbb{R}^{n} to \mathbb{R}. We refer to each r_{j} as a residual,

- training a neural net is nonlinear least-squares optimization
- $\left\|y^{\{i\}}-a^{[L]}\left(x^{\{i\}} ; p\right)\right\|_{2}$ is the residual norm for i th data
- it becomes zero when the network fully-learns the i th data

fundamental idea: cost is a function of weights and biases

- recall $p=\left\{W^{[2]}, W^{[3]}, \ldots, W^{[L]}, b^{[2]}, b^{[3]}, \ldots, b^{[L]}\right\}$
- the cost for one data pair is a function of p :

$$
C^{\{i\}}(p)=\frac{1}{2}\left\|y^{\{i\}}-a^{[L]}\left(x^{\{i\}} ; p\right)\right\|_{2}^{2}
$$

- that is, given parameters p, one forward pass through the network, using input $x^{\{i\}}$, is needed to evaluate $C^{\{i\}}(p)$
- from now on we simplify notation: $\quad a^{[L]}=a^{[L]}\left(x^{\{i\}} ; p\right)$
a. because the activations of the final layer, namely $a^{[L]}$, are determined by the weights and biases in the network

fundamental idea: cost is a function of weights and biases

- recall $p=\left\{W^{[2]}, W^{[3]}, \ldots, W^{[L]}, b^{[2]}, b^{[3]}, \ldots, b^{[L]}\right\}$
- the cost for one data pair is a function of p :

$$
C^{\{i\}}(p)=\frac{1}{2}\left\|y^{\{i\}}-a^{[L]}\left(x^{\{i\}} ; p\right)\right\|_{2}^{2}
$$

- that is, given parameters p, one forward pass through the network, using input $x^{\{i\}}$, is needed to evaluate $C^{\{i\}}(p)$
- from now on we simplify notation: $\quad a^{[L]}=a^{[L]}\left(x^{\{i\}} ; p\right)$
Q. why is $C(p)=\frac{1}{2 N} \sum_{i=1}^{N}\left\|y^{\{i\}}-a^{[L]}\right\|_{2}^{2}$ a function of p ?
a. because the activations of the final layer, namely $a^{[L]}$, are determined by the weights and biases in the network

gradient descent

- our goal is to minimize

$$
C(p)=\frac{1}{2 N} \sum_{i=1}^{N}\left\|y^{\{i\}}-a^{[L]}\right\|_{2}^{2}
$$

- the function $C(p)$ is differentiable
- why? what does this assume about the network?
- ... thus we can compute the gradient $\nabla C(p)$
- the gradient points up hill on the surface $C: \mathbb{R}^{s} \rightarrow \mathbb{R}$,
- natural idea: do gradient descent

$$
\text { GD }(p):
$$

for $s=1,2, \ldots$:

$$
p \leftarrow p-\eta \nabla C(p)
$$

return p

gradient descent (GD) is miserable

$$
\begin{aligned}
& \text { GD }(p): \\
& \quad \text { for } s=1,2, \ldots: \\
& \quad p \leftarrow p-\eta \nabla C(p) \\
& \quad \text { return } p
\end{aligned}
$$

- GD is simple to program
- ... but it will always let you down
- known issues with naive GD:
- it is not clear how far to step (how to set η ?)
- $C(p), \nabla C(p)$ provide no information
- provable convergence requires a line search or trust region approach, otherwise $G(p)$ may not even decrease
- η is called the learning rate in machine learning
- if GD converges, it may be to a local minimum only

gradient descent in machine learning: the 2 insights

- GD is widely used for training in machine learning (ML)
- a seminar priority?: GD limitations, modifications, alternatives
- ML applies 2 "insights" (habits?) about how GD should work:
(1) stochastic gradient descent: since N is big, and because overfitting should be avoided, do not compute the whole gradient $\nabla C(p)$, but instead a randomly chosen $\nabla C^{\{i\}}(p)$
- i.e. choose data ($x^{\{i\}}, y^{\{i\}}$) and do

$$
p \leftarrow p-\eta \nabla C^{\{i\}}(p)
$$

- or a choose a batch: $p \leftarrow p-\eta \frac{1}{m} \sum_{i=1}^{m} \nabla C^{\left\{k_{i}\right\}}(p)$
(2) back-propagation: when computing $\nabla C^{\{i\}}(p)$, regard the chain rule as information which can be fed backward through the network
- back-propagation uses info found in computing forward for $C^{\{i\}}(p)$

stochastic gradient descent (SGD)

```
\(\operatorname{SGD}(p):\)
    for \(s=1,2, \ldots\) :
            \(i=(\) random uniform from \(\{1, \ldots, N\})\)
            \(p \leftarrow p-\eta \nabla C^{\{i\}}(p)\)
    return \(p\)
```

- above is vanilla SGD
- note i is chosen with replacement
- variations:
- choose i without replacement
- batching: $p \leftarrow p-\eta \frac{1}{m} \sum_{i=1}^{m} \nabla C^{\left\{k_{i}\right\}}(p)$
- online: N unknown; data pairs $\left(x^{\{i\}}, y^{\{i\}}\right)$ are provided by a stream

observations about the cost gradient

$$
C(p)=\frac{1}{N} \sum_{i=1}^{N} C^{\{i\}}(p), \quad C^{\{i\}}(p)=\frac{1}{2}\left\|y^{\{i\}}-a^{[L]}\right\|_{2}^{2}
$$

- $N=$ amount of training data $\therefore N$ is (should be) large
- gradient for one data pair:

$$
\begin{aligned}
\nabla C^{\{i\}}(p) & =\nabla\left[\frac{1}{2}\left(y^{\{i\}}-a^{[L]}\right)^{\top}\left(y^{\{i\}}-a^{[L]}\right)\right] \\
& =-\sum_{j=1}^{n_{L}}\left(y_{j}^{\{i\}}-a_{j}^{[L]}\right) \nabla a_{j}^{[L]}
\end{aligned}
$$

- chain rule will be needed to expand further
- network output $a_{j}^{[L]}$ is a composition of matrix-vector products and (nonlinear) σ applications
- how to compute $\nabla a_{j}^{[L]}$ efficiently? ...time for the chain rule!

interlude: the buzzword list

- artificial neuron
- activation
- activation function
- sigmoid, ReLU
- weight matrix
- bias vector
- artificial neural network = ANN
- feed-forward network
- training
- supervised learning
- labeled data
- nonlinear least-squares optimization
- stochastic gradient descent $=$ SGD
- learning rate
- back-propagation $=B P$
- machine learning $=\mathrm{ML}$
- deep learning if $L>2$

Outline

(1) a single artificial neuron
(2) forward through a neural net
(3) training is optimization

4 backward through a neural net
(5) running the codes yourself

6 future topics

cost gradient with respect to weights and biases

- recall:
- $p=\left\{W^{[2]}, W^{[3]}, \ldots, W^{[L]}, b^{[2]}, b^{[3]}, \ldots, b^{[L]}\right\} \in \mathbb{R}^{s}$ is a grab-bag of parameters
- cost for one pair $\left(x^{\{i\}}, y^{\{i\}}\right): \quad C^{\{i\}}(p)=\frac{1}{2}\left\|y^{\{i\}}-a^{[L]}\right\|_{2}^{2}$
- want: $\quad \nabla C^{\{i\}}(p)=\left[\frac{\partial C^{\{i\}}}{\partial p_{1}}, \ldots, \frac{\partial C^{\{i\}}}{\partial p_{s}}\right]$
- the components of this gradient come in two types:

$$
\frac{\partial C^{\{i\}}}{\partial w_{j k}^{[\ell]}}, \quad \frac{\partial C^{\{i\}}}{\partial b_{j}^{[\ell]}}
$$

chain rule on the cost (for the last layer)

- recall: $\quad z_{j}^{[L]}=\sum_{k=1}^{n_{L-1}} w_{j k}^{[L]} a_{k}^{[L-1]}+b_{j}^{[L]}$
- expand the 2 -norm and the activation in the one-pair cost formula:

$$
C^{\{i\}}(p)=\frac{1}{2} \sum_{j=1}^{n_{L}}(y_{j}^{\{i\}}-\underbrace{\sigma\left(z_{j}^{[L]}\right)}_{=a_{j}^{[L]}})^{2}
$$

- thus by the chain rule:

$$
\begin{aligned}
& \frac{\partial C^{\{i\}}}{\partial w_{j k}^{[L]}}=\frac{\partial C^{[i\}}}{\partial z_{j}^{[L]}} \frac{\partial z_{j}^{[L]}}{\partial w_{j k}^{[L]}}=\frac{\partial C^{\{i\}}}{\partial z_{j}^{[L]}} \\
& \frac{\partial C^{\{i\}}}{\partial b_{j}^{[L]}}=\frac{\partial C^{[i]}}{\partial z_{j}^{[L]}} \frac{\partial z_{j}^{[L]}}{\partial b_{j}^{[L]}}=\frac{\partial C^{\{i\}}}{\partial z_{j}^{[L]}}
\end{aligned}
$$

- the boxed quantity shows up a lot, so it gets a name ...

chain rule on the cost

- define, following HH19:

$$
\delta_{j}^{[\ell]}=\frac{\partial \mathcal{C}^{\{i\}}}{\partial z_{j}^{[\ell]}}
$$

- this definition is for any layer ℓ
- remember that this is for one data pair $\left(x^{\{i\}}, y^{\{i\}}\right)$
- for the final layer $\ell=L$ we already have:

$$
\begin{aligned}
\delta_{j}^{[L]} & =-\left(y_{j}^{\{i\}}-a_{j}^{[L]}\right) \sigma^{\prime}\left(z_{j}^{[L]}\right) \\
\frac{\partial C^{\{i\}}}{\partial w_{j k}^{[L]}} & =\delta_{j}^{[L]} a_{k}^{[L-1]} \\
\frac{\partial C^{\{i\}}}{\partial b_{j}^{[L]}} & =\delta_{j}^{[L]}
\end{aligned}
$$

chain rule on the cost

- to go further back into the network, follow multiple routes:
$a_{j}^{[L]}$ depends on $a_{k}^{[L-1]}$ for different k, then $a_{k}^{[L-1]}$ depends on $a_{s}^{[L-2]}$ for different s, \ldots
- example: what is derivative of cost $C^{\{i\}}$ with respect to $w_{43}^{[3]}$?

find inside the chain rule: multiplication by the transpose
- example. $L=4$; consider a weight into layer $\ell=3$:

$$
\frac{\partial C^{\{i\}}}{\partial w_{j k}^{[3]}}=\underbrace{\frac{\partial C^{\{i\}}}{\partial z_{j}^{[3]}}}_{\text {multi-route }} \underbrace{\frac{\partial z_{j}^{[3]}}{\partial w_{j k}^{[3]}}}_{\text {easy }}=\delta_{j}^{[3]} a_{k}^{[2]}
$$

- but $\delta_{j}^{[3]}$ relates to the next-layer deltas $\delta^{[4]}$ by matrix multiplication:

$$
\begin{aligned}
\delta_{j}^{[3]}=\frac{\partial C^{\{i\}}}{\partial z_{j}^{[3]}} & =\sum_{s=1}^{n_{4}} \frac{\partial C^{\{i\}}}{\partial z_{s}^{[4]}} \frac{\partial z_{s}^{[4]}}{\partial z_{j}^{[3]}} \\
& =\sum_{s=1}^{n_{4}} \delta_{s}^{[4]} \frac{\partial z_{s}^{[4]}}{\partial a_{j}^{[3]}} \frac{\partial a_{j}^{[3]}}{\partial z_{j}^{[3]}} \\
& =\sum_{s=1}^{n_{4}} \delta_{s}^{[4]} W_{s j}^{[4]} \sigma^{\prime}\left(z_{j}^{[3]}\right)=\left(\left(W^{[4]}\right)^{\top} \delta^{[4]}\right)_{j} \sigma^{\prime}\left(z_{j}^{[3]}\right)
\end{aligned}
$$

the heart of back-propagation

- define the entrywise (Hadamard?) product of vectors $x, y \in \mathbb{R}^{m}$:

$$
(x \circ y)_{j}=x_{j} y_{j}
$$

Lemma

the vector $\delta^{[l]}=\left[\frac{\partial C^{\{i\}}}{\partial z_{j}^{[]]}}\right] \in \mathbb{R}^{n_{\ell}}$ can be computed by (back-) multiplying the weight matrix transposes (adjoints):

$$
\begin{aligned}
& \delta^{[L]}=\sigma^{\prime}\left(z^{[L]}\right) \circ\left(a^{[L]}-y^{\{i\}}\right), \\
& \delta^{[\ell]}=\sigma^{\prime}\left(z^{[\ell]}\right) \circ \underbrace{\left(W^{[\ell+1]}\right)^{\top} \delta^{[\ell+1]}}_{\text {matrix-vector product }}, \quad \ell=L-1, L-2, \ldots, 2
\end{aligned}
$$

- key point: start with last layer $\ell=L$ and count down to $\ell=2$

back-propagation provides the cost gradient

Corollary

once the $\delta^{[l]}$ are calculated, all components of the gradient are easy:

$$
\frac{\partial C^{\{i\}}}{\partial w_{j k}^{[l]}}=\delta_{j}^{[l]} a_{k}^{[\ell-1]}, \quad \frac{\partial C^{\{i\}}}{\partial b_{j}^{[l]}}=\delta_{j}^{[\ell]}
$$

for $\ell=2, \ldots, L$

- observation: as a matrix,

$$
\frac{\partial C^{\{i\}}}{\partial W^{[l]}}=\delta^{[l]}\left(a^{[\ell-1]}\right)^{\top}
$$

is a rank-one outer product

pseudocode: forward pass with back-propagation

from x, y and $p=\left\{W^{[l]}, b^{[l]}\right\}$ compute $C(p)$ and $\nabla C(p)$:
FORBACK $\left(x, y, W^{[l]}, b^{[l]}\right)$:

$$
\begin{aligned}
& a^{[1]}=x \\
& \text { for } \ell=2, \ldots, L \text { : } \\
& \quad z^{[l]}=W^{[l]} a^{[\ell-1]}+b^{[l]} \\
& a^{[l]}=\sigma\left(z^{[l]}\right), \quad r^{[l]}=\sigma^{\prime}\left(z^{[l]}\right) \\
& C=\frac{1}{2}\left\|y-a^{[L]}\right\|_{2}^{2} \\
& \delta^{[L]}=r^{[L]} \circ\left(a^{[l]}-y\right) \\
& \text { for } \ell=L, \ldots, 2: \\
& \text { if } \ell<L: \\
& \quad \delta^{[l]}=r^{[l]} \circ\left(W^{[l+1]}\right)^{\top} \delta^{[l+1]} \\
& \quad \frac{\partial C}{\partial W^{[l]}}=\delta^{[l]}\left(a^{[l-1]}\right)^{\top} \\
& \frac{\partial C}{\partial b}=\delta^{[l]} \\
& \text { return } C,\left\{\frac{\partial C}{\partial W^{[\ell]}}\right\},\left\{\frac{\partial C}{\partial b[l]}\right\}
\end{aligned}
$$

we are ready to train an ANN

- we are ready to train a network, e.g. on a classification task:

- one could call FORBACK() in a SGD training loop:

$$
\text { for } \begin{aligned}
s & =1,2, \ldots \\
& i=(\text { random uniform from }\{1, \ldots, N\}) \\
& C^{\{i\}}, \frac{\partial C^{\{i\}}}{\partial W^{[l]}}, \frac{\partial C^{[i\}}}{\partial b^{[\ell]}}=\operatorname{FORBACK}\left(x^{\{i\}}, y^{\{i\}}, \ldots\right) \\
& W^{[\ell]} \leftarrow W^{[\ell]}-\eta \frac{\partial C^{\{i\}}}{\partial W^{[\ell]}} \\
& b^{[\ell]} \leftarrow b^{[\ell]}-\eta \frac{\partial C^{\{i\}}}{\partial b^{[\ell]}}
\end{aligned}
$$

- also natural to combine in one loop: (forward pass) $+B P+S G D$

pseudocode: training using SGD and BP

integrate SGD into the FORBACK() loop; see netbp. m in HH19:

$$
\begin{aligned}
& \text { TRAINING }\left(\left\{x^{\{i\}}\right\},\left\{y^{\{i\}}\right\},\left\{W^{[\ell]}\right\},\left\{b^{[\ell]}\right\}\right): \\
& \text { for } s=1,2, \ldots \\
& i=\text { (random uniform from }\{1, \ldots, N\}) \\
& a^{[1]}=x^{\{i\}} \\
& \text { for } \ell=2, \ldots, L: \\
& z^{[\ell]}=W^{[\ell]} a^{[\ell-1]}+b^{[\ell]} \\
& a^{[\ell]}=\sigma\left(z^{[\ell]}\right), \quad r^{[\ell]}=\sigma^{\prime}\left(z^{[\ell]}\right) \\
& \delta^{[L]}=r^{[L]} \circ\left(a^{[L]}-y^{\{i\}}\right) \\
& \text { for } \ell=L, \ldots, 2: \\
& \text { if } \ell<L: \\
& \delta^{[\ell]}=r^{[\ell]} \circ\left(W^{[\ell+1]}\right)^{\top} \delta^{[\ell+1]} \\
& W^{[\ell]} \leftarrow W^{[\ell]}-\eta \delta^{[\ell]}\left(a^{[\ell-1]}\right)^{\top} \\
& b^{[\ell]} \leftarrow b^{[\ell]}-\eta \delta^{[\ell]} \\
& \text { return }\left\{W^{[\ell]}\right\},\left\{b^{[\ell]}\right\}
\end{aligned}
$$

Outline

(1) a single artificial neuron
(2) forward through a neural net
(3) training is optimization
4) backward through a neural net
(5) running the codes yourself

6 future topics

Matlab implementations

- HH19 includes a Matlab implementation of TRAINING() for the small ($L=4$) ANN and classification task I have been showing
- see netbp.m and netbpfull.m at
www.maths.ed.ac.uk/~dhigham/algfiles.html
- I rewrote this code for my own amusement; see example1.m at github.com/bueler/ml-seminar/tree/main/talk1/code
- my codes are tested in both Matlab and Octave
- as a UAF person you have access to Matlab online if you want it matlab.mathworks.com
- from now on, l'll assume you can run these things

HH19 code netbp.m fits on one page

```
function netbp
%NETBP Uses backpropagation to train a network
%%%%%%%% DATA %%%%%%%%%%%%
x1 = [0.1,0.3,0.1,0.6,0.4,0.6,0.5,0.9,0.4,0.7];
x2 = [0.1,0.4,0.5,0.9,0.2,0.3,0.6,0.2,0.4,0.6];
y = [ones(1,5) zeros(1,5); zeros(1,5) ones(1,5)];
% Initialize weights and biases
rng(5000);
W2 = 0.5*randn (2,2); W3 = 0.5*randn (3,2); W4 = 0.5*randn (2,3);
b2 = 0.5*randn(2,1); b3 = 0.5*randn(3,1); b4 = 0.5*randn(2,1);
% Forward and Back propagate
eta = 0.05; % learning rate
Niter = 1e6; % number of SG iterations
savecost = zeros(Niter,1); % value of cost function at each iteration
for counter = 1:Niter
        k = randi(10); % choose a training point at random
        x = [x1(k); x2(k)];
        % Forward pass
```


running netbp.m

- run graphics version of net.bp.m in Matlab online:

```
>> tic, netbpfull, toc
    ... spews cost values
Elapsed time is 148.599924 seconds.
```

- does 10^{6} SGD iterations ... that's not great for a small network
- result: right figure below shows the contour where $a_{1}^{[4]}>a_{2}^{[4]}$
- my octave version produces similar result in similar time

Outline

(1) a single artificial neuron
(2) forward through a neural net
(3) training is optimization
4) backward through a neural net
(5) running the codes yourself

6 future topics

there is so much more to say

- please actually read HH 19 ?
- next are 4 topics which might catch your interest as a talk
- these topics have math inside!

convolutional neural networks (CNN)

- based on discrete convolution of time series and images
- a talk to explain convolution, sans neural nets?
- CNNs win at image classification
- example given in HH19

autoencoders

- one form of unsupervised training
- fit the identity map with a fancy nonlinear function (!)

support vector machines

- recall: "single layer perceptrons can't compute XOR"
- linearly-separable classification problems
- support vector machines (SVM)
- add stable optimality to linearly-separable classification

stochastic optimization

- stochastic optimization
- the objective function is random; the goal is to minimize the expected objective value
- SGD is well-suited for this goal?
- online machine learning model
- improvements on SGD
- momentum
- dropout
- Adam (\rightarrow), and etc.

Require: α : Stepsize

additional topics?

- recurrent neural networks
- graph neural networks
- algorithmic/automatic differentiation
- classical nonlinear least-squares methods
- Gauss-Newton
- Levenberg-Marquardt
- classical optimization: Newton-type methods
- quasi-Newton methods, especially L-BFGS
- and on and on through the buzzwords ...

