
Getting started on machine learning
with one little artificial neural net

Ed Bueler

MATH 692 Mathematics for Machine Learning
UAF

13 January
20 January

Ed Bueler (UAF) Getting started on machine learning Spring 2022 1 / 58



participant-driven seminar logistics

sign-up sheet!
in-person or hybrid?
◦ is this classroom adequate?

what will be the topics?
◦ are there out-of-bounds topics?
◦ who is volunteering to talk, and when?

my existing webpages . . . improvements?
◦ bueler.github.io/M692S22
◦ github.com/bueler/ml-seminar

Ed Bueler (UAF) Getting started on machine learning Spring 2022 2 / 58

http://bueler.github.io/M692S22/index.html
https://github.com/bueler/ml-seminar


today’s talk

my topic: how this ↓ neural network does this ↓ classification task

an example from this ↓ paper:

HH19 = C. F. Higham & D. J. Higham (2019). Deep learning: An introduc-
tion for applied mathematicians. SIAM Review, 61(4), 860-891

Ed Bueler (UAF) Getting started on machine learning Spring 2022 3 / 58

http://www.math.stonybrook.edu/~bishop/classes/math533.S21/MachineLearning/SIAMreview.pdf
http://www.math.stonybrook.edu/~bishop/classes/math533.S21/MachineLearning/SIAMreview.pdf


goal for today

know the meanings of some machine learning (ML) language:

artificial neuron activation function
weight matrix bias vector
training stochastic gradient descent
back-propagation

which standard mathematical concept(s) match these buzzwords?

Ed Bueler (UAF) Getting started on machine learning Spring 2022 4 / 58



big caveat

I am no expert on what I am talking about here
◦ many in the room know more than me

I volunteered to give one intro talk, that’s all!

Ed Bueler (UAF) Getting started on machine learning Spring 2022 5 / 58



Outline

1 a single artificial neuron

2 forward through a neural net

3 training is optimization

4 backward through a neural net

5 running the codes yourself

6 future topics

Ed Bueler (UAF) Getting started on machine learning Spring 2022 6 / 58



artificial neuron = nonlinear-ized inner product

given (column) vectors v ,w ∈ Rn

recall inner product:

〈w , v〉 = w>v =
n∑

j=1

wjvj

apply a nonlinear function
σ : R1 → R1:

a = σ

 n∑
j=1

wjvj

 ∈ R1

◦ detail: add a bias b ∈ R1

◦ that’s it! an artificial neuron

Ed Bueler (UAF) Getting started on machine learning Spring 2022 7 / 58



artificial neuron = nonlinear-ized inner product

given (column) vectors v ,w ∈ Rn

recall inner product:

〈w , v〉 = w>v =
n∑

j=1

wjvj

apply a nonlinear function
σ : R1 → R1:

a = σ

 n∑
j=1

wjvj + b

 ∈ R1

◦ detail: add a bias b ∈ R1

◦ that’s it! an artificial neuron

Ed Bueler (UAF) Getting started on machine learning Spring 2022 7 / 58



neuron roles

v is input
weights w and biases b are
parameters
◦ they need training

the activation function σ is fixed
the output a is the activation of
the neuron

a = σ

 n∑
j=1

wjvj + b



Ed Bueler (UAF) Getting started on machine learning Spring 2022 8 / 58



nonlinear activation function

sigmoid ReLU

σ is the activation function
◦ an increasing scalar function with bounded derivative

some possibilities:

◦ sigmoid, e.g. σ(z) =
1

1 + e−z

◦ rectified linear unit (ReLU), σ(z) =

{
z, z > 0
0, z ≤ 0

Ed Bueler (UAF) Getting started on machine learning Spring 2022 9 / 58



a trained neuron

a trained neuron has known
parameters w ,b
then a : Rn → R1 is a known function:

a = a(v)

◦ similar cost to inner product
◦ backward stable
◦ one might write a(v ;w ,b) to make

dependence on parameters clear

Ed Bueler (UAF) Getting started on machine learning Spring 2022 10 / 58



history and naming

Rosenblatt (1958): from biological motivation, proposes a
perceptron, a single artificial neuron with binary output:

σ(z) =

{
1, z > 0
0, z ≤ 0

◦ with learning algorithm
Minsky & Papert (1969): a single layer of perceptrons cannot even
learn the XOR function!
◦ single layer perceptrons are linear separators
◦ support vector machines are perceptrons of optimal stability

feedforward artificial neural networks (ANN), the next topic, are
sometimes called multilayer perceptrons
◦ . . . which ignores activation function details

Ed Bueler (UAF) Getting started on machine learning Spring 2022 11 / 58



Outline

1 a single artificial neuron

2 forward through a neural net

3 training is optimization

4 backward through a neural net

5 running the codes yourself

6 future topics

Ed Bueler (UAF) Getting started on machine learning Spring 2022 12 / 58



feed-forward networks

considering only feed-forward networks in this talk
◦ edges connect consecutive layers, in order
◦ in ML language: feed-forward versus recurrent
◦ in graph language: “feed-forward network” = connected, directed

acyclic graph which is equal to its own transitive reduction . . . ?

Ed Bueler (UAF) Getting started on machine learning Spring 2022 13 / 58



network notation

notation from HH19
n` is number of neurons in layer ` = 1, . . . ,L
◦ ` = 1 is input layer
◦ input values are first-layer activations: x = a[1] ∈ Rn1

◦ ` = L is output layer
◦ output values are final-layer activations: y = a[L] ∈ RnL

activations in layer ` form a vector a[`] ∈ Rn`

◦ a[`]
j is activation of neuron j in layer `

Ed Bueler (UAF) Getting started on machine learning Spring 2022 14 / 58



weight notation

weight w [`]
jk on the edge from neuron a[`−1]

k to neuron a[`]
j

thus

a[`]
j = σ

(n`−1∑
k=1

w [`]
jk a[`−1]

k + bj

)
which suggests matrix-vector multiplication!

Ed Bueler (UAF) Getting started on machine learning Spring 2022 15 / 58



weight notation using vectors and matrices

one (row) vector of weights for each neuron
the inputs to the neurons in a layer are weighted by a matrix:

W [`] = (weights into layer `) =
[
w [`]

jk

]
◦ W [`] is n` × n`−1

assuming σ applied entrywise:

a[`] = σ
(

W [`]a[`−1] + b[`]
)

◦ bias vector b[`] ∈ Rn`

Ed Bueler (UAF) Getting started on machine learning Spring 2022 16 / 58



forward pass = nonlinear-ized matrix multiplication

for this small L = 4 network:

y = a[4] = σ
(

W [4]a[3] + b[4]
)
= . . .

= σ
(

W [4]σ
(

W [3]σ
(

W [2]x + b[2]
)
+ b[3]

)
+ b[4]

)
over-simplified: σ(z) = z and b[`] = 0 implies y = W [4]W [3]W [2]x
feed-forward network = nonlinear- & affine-ized matrix product

Ed Bueler (UAF) Getting started on machine learning Spring 2022 17 / 58



forward-pass neural network formulas

compute from input x = a[1] to output y = a[L] by layers:

a[`] = σ
(

W [`]a[`−1] + b[`]
)

for ` = 2,3, . . . ,L

◦ equation (3.2) in HH19

thus a forward pass is an obvious loop:

FORWARD(x):
a[1] = x
for ` = 2,3, . . . ,L:

z [`] = W [`]a[`−1] + b[`]

a[`] = σ
(
z [`]
)

return y = a[L]

◦ {W [`]} and {b[`]} are stored in some data structure
◦ σ(z) is implemented entrywise

Ed Bueler (UAF) Getting started on machine learning Spring 2022 18 / 58



forward-pass computation work model (minor point)

work = number of floating-point operations
work at layer `:

2n[`−1]n[`] + O(n[`]) = O(n[`−1]n[`])

◦ using big-O in the “n→∞” limit of big layers
◦ evaluating activation functions is cheap
◦ the work at one layer is basically just a matrix-vector product

the total forward-pass work in an L-layer network is asymptotically
the same as L matrix-vector products:

L∑
`=2

O(n[`−1]n[`]) = O(Ln 2
max)

note: a forward pass is easily computed by GPU hardware
◦ versus solving linear systems . . .

Ed Bueler (UAF) Getting started on machine learning Spring 2022 19 / 58



Outline

1 a single artificial neuron

2 forward through a neural net

3 training is optimization

4 backward through a neural net

5 running the codes yourself

6 future topics

Ed Bueler (UAF) Getting started on machine learning Spring 2022 20 / 58



training is a biologically-motivated procedure

imagine teaching your dog to read numbers 1,2,3:

example training procedure:
1 randomly present one image of a digit from above

2 if dog barks correct number of times then gets treat

bark! bark! =⇒

3 otherwise move on to next image

Ed Bueler (UAF) Getting started on machine learning Spring 2022 21 / 58



training yields persistant changes to brain

biological learning can last from hours to decades
something permanent/persistent changes within the brain
◦ but neuron excitation is electrical (activation is temporary),
◦ and neuron count is relatively fixed

training yields chemical or morpological changes in connections
between neurons, especially the synapses where the axon
connects to another neuron’s dendrite

Ed Bueler (UAF) Getting started on machine learning Spring 2022 22 / 58



artificial neurons as a model of real neurons

but biological realism is not needed for machine learning!
we use a simplified artificial neuron:

◦ this model is merely a formula: a = σ

(
n∑

k=1

wk vk + b

)
however, training needs to make “permanent” changes in the
weights wk and biases b
after training, forward passes are the network’s “learned behavior”

Ed Bueler (UAF) Getting started on machine learning Spring 2022 23 / 58



how does training work?

so, how does training work in artificial neural networks?
only considering supervised training here
given: N pieces of labeled data (pairs)

(x{i}, y{i}) for i = 1, . . . ,N

◦ x{i} ∈ Rn1 are the data
◦ y{i} ∈ RnL are the labels
◦ in a classification task, the y{i} only take on finitely-many values

observation: the labeled data determine the number of neurons in
the first and last layers

Ed Bueler (UAF) Getting started on machine learning Spring 2022 24 / 58



example (classification task)

example classification task data (x{i}, y{i}) in one figure

◦ N = 10
◦ marker coordinates give x{i} ∈ [0,1]2

◦ marker type gives y{i}:

◦ : y{i} =
[
1
0

]
, × : y{i} =

[
0
1

]
◦ a neural net for this data must have n1 = nL = 2:
◦ ignore shading for now . . .

Ed Bueler (UAF) Getting started on machine learning Spring 2022 25 / 58



a supervised training cost functional

supervised training means choosing the weights W [`] and
biases b[`], in all the layers, so as to approximately minimize the
average misfit between the the network output from input data
vector x{i} and the corresponding label vector y{i}

using the squared 2-norm for the misfit, this is a formula:

Cost =
1
N

N∑
i=1

1
2
‖y{i} − a[L](x{i})‖22

◦ a[L](x{i}) = output-layer activation from forward pass with input x{i}

◦ the Cost is a scalar-valued function (functional) of the weights and
biases

Ed Bueler (UAF) Getting started on machine learning Spring 2022 26 / 58



better training notation

let’s give all the parameters a single-letter name:

p = {W [2],W [3], . . . ,W [L],b[2],b[3], . . . ,b[L]} ∈ Rs

◦ p collects all weight matrices and biases into one big column vector

define the cost (misfit) of the network for one data pair:

C{i}(p) =
1
2

∥∥∥y{i} − a[L](x{i};p)
∥∥∥2

2

key idea:

The output from a forward pass through the network, namely
a[L](x{i};p), depends both on the input data x{i} and all the
weights and biases p. We emphasize that the cost of one data
pair is a function of p: C{i}(p).

Ed Bueler (UAF) Getting started on machine learning Spring 2022 27 / 58



cost functional = objective = average misfit

now define a total cost functional, or objective, C(p)
C(p) is the average misfit over all the labeled data:

C(p) =
1
N

N∑
i=1

C{i}(p)

=
1

2N

N∑
i=1

∥∥∥y{i} − a[L](x{i};p)
∥∥∥2

2

Ed Bueler (UAF) Getting started on machine learning Spring 2022 28 / 58



training = nonlinear least-squares optimization

compare

C(p) =
1

2N

N∑
i=1

∥∥∥y{i} − a[L](x{i};p)
∥∥∥2

2

to “nonlinear least-squares” in a standard optimization textbook
(Nocedal & Wright, 2006; Chapter 10):

training a neural net is nonlinear least-squares optimization
◦
∥∥y{i} − a[L](x{i};p)

∥∥
2 is the residual norm for i th data

◦ it becomes zero when the network fully-learns the i th data

Ed Bueler (UAF) Getting started on machine learning Spring 2022 29 / 58



fundamental idea: cost is a function of weights and biases

recall p = {W [2],W [3], . . . ,W [L],b[2],b[3], . . . ,b[L]}
the cost for one data pair is a function of p:

C{i}(p) =
1
2

∥∥∥y{i} − a[L](x{i};p)
∥∥∥2

2

that is, given parameters p, one forward pass through the network,
using input x{i}, is needed to evaluate C{i}(p)
from now on we simplify notation: a[L] = a[L](x{i};p)

Q. why is C(p) = 1
2N
∑N

i=1

∥∥y{i} − a[L]
∥∥2

2 a function of p?

a. because the activations of the final layer, namely a[L], are
determined by the weights and biases in the network

Ed Bueler (UAF) Getting started on machine learning Spring 2022 30 / 58



fundamental idea: cost is a function of weights and biases

recall p = {W [2],W [3], . . . ,W [L],b[2],b[3], . . . ,b[L]}
the cost for one data pair is a function of p:

C{i}(p) =
1
2

∥∥∥y{i} − a[L](x{i};p)
∥∥∥2

2

that is, given parameters p, one forward pass through the network,
using input x{i}, is needed to evaluate C{i}(p)
from now on we simplify notation: a[L] = a[L](x{i};p)

Q. why is C(p) = 1
2N
∑N

i=1

∥∥y{i} − a[L]
∥∥2

2 a function of p?

a. because the activations of the final layer, namely a[L], are
determined by the weights and biases in the network

Ed Bueler (UAF) Getting started on machine learning Spring 2022 30 / 58



gradient descent

our goal is to minimize C(p) =
1

2N

N∑
i=1

∥∥∥y{i} − a[L]
∥∥∥2

2

the function C(p) is differentiable
◦ why? what does this assume about the network?

. . . thus we can compute the gradient ∇C(p)
the gradient points up hill on the surface C : Rs → R,
natural idea: do gradient descent

GD(p):
for s = 1,2, . . . :

p ← p − η∇C(p)
return p

Ed Bueler (UAF) Getting started on machine learning Spring 2022 31 / 58



gradient descent (GD) is miserable

GD(p):
for s = 1,2, . . . :

p ← p − η∇C(p)
return p

GD is simple to program
◦ . . . but it will always let you down

known issues with naive GD:
◦ it is not clear how far to step (how to set η?)

C(p), ∇C(p) provide no information
provable convergence requires a line search or trust region approach,
otherwise G(p) may not even decrease
η is called the learning rate in machine learning

◦ if GD converges, it may be to a local minimum only

Ed Bueler (UAF) Getting started on machine learning Spring 2022 32 / 58



gradient descent in machine learning: the 2 insights

GD is widely used for training in machine learning (ML)
◦ a seminar priority?: GD limitations, modifications, alternatives

ML applies 2 “insights” (habits?) about how GD should work:

1 stochastic gradient descent: since N is big, and because
overfitting should be avoided, do not compute the whole gradient
∇C(p), but instead a randomly chosen ∇C{i}(p)
◦ i.e. choose data (x{i}, y{i}) and do

p ← p − η∇C{i}(p)

◦ or a choose a batch: p ← p − η 1
m

∑m
i=1∇C{ki}(p)

2 back-propagation: when computing ∇C{i}(p), regard the chain
rule as information which can be fed backward through the network
◦ back-propagation uses info found in computing forward for C{i}(p)

Ed Bueler (UAF) Getting started on machine learning Spring 2022 33 / 58



stochastic gradient descent (SGD)

SGD(p):
for s = 1,2, . . . :

i = (random uniform from {1, . . . ,N})
p ← p − η∇C{i}(p)

return p

above is vanilla SGD
◦ note i is chosen with replacement

variations:
◦ choose i without replacement
◦ batching: p ← p − η 1

m

∑m
i=1∇C{ki}(p)

◦ online: N unknown; data pairs (x{i}, y{i}) are provided by a stream

Ed Bueler (UAF) Getting started on machine learning Spring 2022 34 / 58



observations about the cost gradient

C(p) =
1
N

N∑
i=1

C{i}(p), C{i}(p) =
1
2

∥∥∥y{i} − a[L]
∥∥∥2

2

N = amount of training data ∴ N is (should be) large
gradient for one data pair:

∇C{i}(p) = ∇
[

1
2
(y{i} − a[L])>(y{i} − a[L])

]
= −

nL∑
j=1

(y{i}j − a[L]
j )∇a[L]

j

chain rule will be needed to expand further
◦ network output a[L]

j is a composition of matrix-vector products and
(nonlinear) σ applications

how to compute ∇a[L]
j efficiently? . . . time for the chain rule!

Ed Bueler (UAF) Getting started on machine learning Spring 2022 35 / 58



interlude: the buzzword list

artificial neuron
◦ activation
◦ activation function

sigmoid, ReLU
◦ weight matrix
◦ bias vector

artificial neural network = ANN
◦ feed-forward network

training
◦ supervised learning
◦ labeled data
◦ nonlinear least-squares optimization

stochastic gradient descent = SGD
◦ learning rate

back-propagation = BP

machine learning = ML
◦ deep learning if L > 2

Ed Bueler (UAF) Getting started on machine learning Spring 2022 36 / 58



Outline

1 a single artificial neuron

2 forward through a neural net

3 training is optimization

4 backward through a neural net

5 running the codes yourself

6 future topics

Ed Bueler (UAF) Getting started on machine learning Spring 2022 37 / 58



cost gradient with respect to weights and biases

recall:
◦ p = {W [2],W [3], . . . ,W [L],b[2],b[3], . . . ,b[L]} ∈ Rs is a grab-bag of

parameters

◦ cost for one pair (x{i}, y{i}): C{i}(p) =
1
2

∥∥∥y{i} − a[L]
∥∥∥2

2

want: ∇C{i}(p) =
[
∂C{i}

∂p1
, . . . ,

∂C{i}

∂ps

]
the components of this gradient come in two types:

∂C{i}

∂w [`]
jk

,
∂C{i}

∂b[`]
j

Ed Bueler (UAF) Getting started on machine learning Spring 2022 38 / 58



chain rule on the cost (for the last layer)

recall: z [L]
j =

nL−1∑
k=1

w [L]
jk a[L−1]

k + b[L]
j

expand the 2-norm and the activation in the one-pair cost formula:

C{i}(p) =
1
2

nL∑
j=1

(y{i}j − σ(z [L]
j )︸ ︷︷ ︸

=a[L]
j

)2

thus by the chain rule:

∂C{i}

∂w [L]
jk

=
∂C{i}

∂z [L]
j

∂z [L]
j

∂w [L]
jk

=
∂C{i}

∂z [L]
j

a[L−1]
k

∂C{i}

∂b[L]
j

=
∂C{i}

∂z [L]
j

∂z [L]
j

∂b[L]
j

=
∂C{i}

∂z [L]
j

◦ the boxed quantity shows up a lot, so it gets a name . . .
Ed Bueler (UAF) Getting started on machine learning Spring 2022 39 / 58



chain rule on the cost

define, following HH19:

δ
[`]
j =

∂C{i}

∂z [`]
j

◦ this definition is for any layer `
◦ remember that this is for one data pair (x{i}, y{i})

for the final layer ` = L we already have:

δ
[L]
j = −(y{i}j − a[L]

j )σ′(z [L]
j )

∂C{i}

∂w [L]
jk

= δ
[L]
j a[L−1]

k

∂C{i}

∂b[L]
j

= δ
[L]
j

Ed Bueler (UAF) Getting started on machine learning Spring 2022 40 / 58



chain rule on the cost

to go further back into the network, follow multiple routes:

a[L]
j depends on a[L−1]

k for different k, then a[L−1]
k depends on

a[L−2]
s for different s, . . .

example: what is derivative of cost C{i} with respect to w [3]
43 ?

Ed Bueler (UAF) Getting started on machine learning Spring 2022 41 / 58



find inside the chain rule: multiplication by the transpose

example. L = 4; consider a weight into layer ` = 3:

∂C{i}

∂w [3]
jk

=
∂C{i}

∂z [3]
j︸ ︷︷ ︸

multi−route

∂z [3]
j

∂w [3]
jk︸ ︷︷ ︸

easy

= δ
[3]
j a[2]

k

but δ[3]j relates to the next-layer deltas δ[4] by matrix multiplication:

δ
[3]
j =

∂C{i}

∂z [3]
j

=

n4∑
s=1

∂C{i}

∂z [4]
s

∂z [4]
s

∂z [3]
j

=

n4∑
s=1

δ
[4]
s
∂z [4]

s

∂a[3]
j

∂a[3]
j

∂z [3]
j

=

n4∑
s=1

δ
[4]
s w [4]

sj σ
′(z [3]

j ) =
(
(W [4])>δ[4]

)
j
σ′(z [3]

j )

Ed Bueler (UAF) Getting started on machine learning Spring 2022 42 / 58



the heart of back-propagation

define the entrywise (Hadamard?) product of vectors x , y ∈ Rm:

(x ◦ y)j = xjyj

Lemma

the vector δ[`] =

∂C{i}

∂z [`]
j

 ∈ Rn` can be computed by (back-)

multiplying the weight matrix transposes (adjoints):

δ[L] = σ′(z [L]) ◦ (a[L] − y{i}),

δ[`] = σ′(z [`]) ◦ (W [`+1])>δ[`+1]︸ ︷︷ ︸
matrix-vector product

, ` = L− 1,L− 2, . . . ,2

key point: start with last layer ` = L and count down to ` = 2
Ed Bueler (UAF) Getting started on machine learning Spring 2022 43 / 58



back-propagation provides the cost gradient

Corollary

once the δ[`] are calculated, all components of the gradient are easy:

∂C{i}

∂w [`]
jk

= δ
[`]
j a[`−1]

k ,
∂C{i}

∂b[`]
j

= δ
[`]
j

for ` = 2, . . . ,L

observation: as a matrix,

∂C{i}

∂W [`]
= δ[`]

(
a[`−1]

)>
is a rank-one outer product

Ed Bueler (UAF) Getting started on machine learning Spring 2022 44 / 58



pseudocode: forward pass with back-propagation

from x , y and p = {W [`],b[`]} compute C(p) and ∇C(p):

FORBACK(x , y ,W [`],b[`]):
a[1] = x
for ` = 2, . . . ,L:

z [`] = W [`]a[`−1] + b[`]

a[`] = σ(z [`]), r [`] = σ′(z [`])

C = 1
2‖y − a[L]‖22

δ[L] = r [L] ◦ (a[L] − y)
for ` = L, . . . ,2:

if ` < L:
δ[`] = r [`] ◦ (W [`+1])>δ[`+1]

∂C
∂W [`] = δ[`](a[`−1])>

∂C
∂b[`] = δ[`]

return C,
{

∂C
∂W [`]

}
,
{

∂C
∂b[`]

}
Ed Bueler (UAF) Getting started on machine learning Spring 2022 45 / 58



we are ready to train an ANN

we are ready to train a network, e.g. on a classification task:

one could call FORBACK() in a SGD training loop:

for s = 1,2, . . .
i = (random uniform from {1, . . . ,N})
C{i}, ∂C{i}

∂W [`] ,
∂C{i}
∂b[`] = FORBACK(x{i}, y{i}, . . . )

W [`] ←W [`] − η ∂C{i}
∂W [`]

b[`] ← b[`] − η ∂C{i}
∂b[`]

also natural to combine in one loop: (forward pass) + BP + SGD
Ed Bueler (UAF) Getting started on machine learning Spring 2022 46 / 58



pseudocode: training using SGD and BP

integrate SGD into the FORBACK() loop; see netbp.m in HH19:

TRAINING({x{i}}, {y{i}}, {W [`]}, {b[`]}):
for s = 1,2, . . .

i = (random uniform from {1, . . . ,N})
a[1] = x{i}

for ` = 2, . . . ,L:
z [`] = W [`]a[`−1] + b[`]

a[`] = σ(z [`]), r [`] = σ′(z [`])

δ[L] = r [L] ◦ (a[L] − y{i})
for ` = L, . . . ,2:

if ` < L:
δ[`] = r [`] ◦ (W [`+1])>δ[`+1]

W [`] ←W [`] − η δ[`](a[`−1])>

b[`] ← b[`] − η δ[`]

return {W [`]}, {b[`]}
Ed Bueler (UAF) Getting started on machine learning Spring 2022 47 / 58



Outline

1 a single artificial neuron

2 forward through a neural net

3 training is optimization

4 backward through a neural net

5 running the codes yourself

6 future topics

Ed Bueler (UAF) Getting started on machine learning Spring 2022 48 / 58



Matlab implementations

HH19 includes a Matlab implementation of TRAINING() for the
small (L = 4) ANN and classification task I have been showing
see netbp.m and netbpfull.m at

www.maths.ed.ac.uk/∼dhigham/algfiles.html
I rewrote this code for my own amusement; see example1.m at

github.com/bueler/ml-seminar/tree/main/talk1/code

◦ my codes are tested in both Matlab and Octave

as a UAF person you have access to Matlab online if you want it
matlab.mathworks.com

from now on, I’ll assume you can run these things

Ed Bueler (UAF) Getting started on machine learning Spring 2022 49 / 58

https://www.maths.ed.ac.uk/~dhigham/algfiles.html
https://github.com/bueler/ml-seminar/tree/main/talk1/code
https://matlab.mathworks.com/


HH19 code netbp.m fits on one page

...

Ed Bueler (UAF) Getting started on machine learning Spring 2022 50 / 58



running netbp.m

run graphics version of netbp.m in Matlab online:
>> tic, netbpfull, toc

... spews cost values
Elapsed time is 148.599924 seconds.

does 106 SGD iterations . . . that’s not great for a small network

result: right figure below shows the contour where a[4]
1 > a[4]

2

my octave version produces similar result in similar time

Ed Bueler (UAF) Getting started on machine learning Spring 2022 51 / 58



Outline

1 a single artificial neuron

2 forward through a neural net

3 training is optimization

4 backward through a neural net

5 running the codes yourself

6 future topics

Ed Bueler (UAF) Getting started on machine learning Spring 2022 52 / 58



there is so much more to say

please actually read HH19?
next are 4 topics which might catch your interest as a talk
◦ these topics have math inside!

Ed Bueler (UAF) Getting started on machine learning Spring 2022 53 / 58



convolutional neural networks (CNN)

based on discrete convolution of time series and images
◦ a talk to explain convolution, sans neural nets?

CNNs win at image classification
example given in HH19

Ed Bueler (UAF) Getting started on machine learning Spring 2022 54 / 58



autoencoders

one form of unsupervised training
fit the identity map with a fancy nonlinear function (!)

Ed Bueler (UAF) Getting started on machine learning Spring 2022 55 / 58



support vector machines

recall: “single layer perceptrons can’t compute XOR”
◦ linearly-separable classification problems

support vector machines (SVM)
◦ add stable optimality to linearly-separable classification

Ed Bueler (UAF) Getting started on machine learning Spring 2022 56 / 58



stochastic optimization

stochastic optimization
◦ the objective function is random; the goal is to minimize the

expected objective value
◦ SGD is well-suited for this goal?

online machine learning model
improvements on SGD
◦ momentum
◦ dropout
◦ Adam (→), and etc.

Ed Bueler (UAF) Getting started on machine learning Spring 2022 57 / 58



additional topics?

recurrent neural networks
graph neural networks
algorithmic/automatic differentiation
classical nonlinear least-squares methods
◦ Gauss-Newton
◦ Levenberg-Marquardt

classical optimization: Newton-type methods
◦ quasi-Newton methods, especially L-BFGS

and on and on through the buzzwords . . .

Ed Bueler (UAF) Getting started on machine learning Spring 2022 58 / 58


	a single artificial neuron
	forward through a neural net
	training is optimization
	backward through a neural net
	running the codes yourself
	future topics

