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participant-driven seminar logistics

sign-up sheet!
in-person or hybrid?
◦ is this classroom adequate?

what will be the topics?
◦ are there out-of-bounds topics?
◦ who is volunteering to talk, and when?

my existing webpages . . . improvements?
◦ bueler.github.io/M692S22
◦ github.com/bueler/ml-seminar
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today’s talk

my topic: how this ↓ neural network does this ↓ classification task

an example from this ↓ paper:

HH19 = C. F. Higham & D. J. Higham (2019). Deep learning: An introduc-
tion for applied mathematicians. SIAM Review, 61(4), 860-891
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goal for today

know the meanings of some machine learning (ML) language:

artificial neuron activation function
weight matrix bias vector
training stochastic gradient descent
back-propagation

which standard mathematical concept(s) match these buzzwords?
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big caveat

I am no expert on what I am talking about here
◦ many in the room know more than me

I volunteered to give one intro talk, that’s all!
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Outline

1 a single artificial neuron

2 forward through a neural net

3 training is optimization

4 backward through a neural net

5 running the codes yourself

6 future topics
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artificial neuron = nonlinear-ized inner product

given (column) vectors v ,w ∈ Rn

recall inner product:

〈w , v〉 = w>v =
n∑

j=1

wjvj

apply a nonlinear function
σ : R1 → R1:

a = σ

 n∑
j=1

wjvj

 ∈ R1

◦ detail: add a bias b ∈ R1

◦ that’s it! an artificial neuron
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artificial neuron = nonlinear-ized inner product

given (column) vectors v ,w ∈ Rn

recall inner product:

〈w , v〉 = w>v =
n∑

j=1

wjvj

apply a nonlinear function
σ : R1 → R1:

a = σ

 n∑
j=1

wjvj + b

 ∈ R1

◦ detail: add a bias b ∈ R1

◦ that’s it! an artificial neuron
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neuron roles

v is input
weights w and biases b are
parameters
◦ they need training

the activation function σ is fixed
the output a is the activation of
the neuron

a = σ

 n∑
j=1

wjvj + b


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nonlinear activation function

sigmoid ReLU

σ is the activation function
◦ an increasing scalar function with bounded derivative

some possibilities:

◦ sigmoid, e.g. σ(z) =
1

1 + e−z

◦ rectified linear unit (ReLU), σ(z) =

{
z, z > 0
0, z ≤ 0
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a trained neuron

a trained neuron has known
parameters w ,b
then a : Rn → R1 is a known function:

a = a(v)

◦ similar cost to inner product
◦ backward stable
◦ one might write a(v ;w ,b) to make

dependence on parameters clear
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history and naming

Rosenblatt (1958): from biological motivation, proposes a
perceptron, a single artificial neuron with binary output:

σ(z) =

{
1, z > 0
0, z ≤ 0

◦ with learning algorithm
Minsky & Papert (1969): a single layer of perceptrons cannot even
learn the XOR function!
◦ single layer perceptrons are linear separators
◦ support vector machines are perceptrons of optimal stability

feedforward artificial neural networks (ANN), the next topic, are
sometimes called multilayer perceptrons
◦ . . . which ignores activation function details
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Outline

1 a single artificial neuron

2 forward through a neural net

3 training is optimization

4 backward through a neural net

5 running the codes yourself

6 future topics

Ed Bueler (UAF) Getting started on machine learning Spring 2022 12 / 58



feed-forward networks

considering only feed-forward networks in this talk
◦ edges connect consecutive layers, in order
◦ in ML language: feed-forward versus recurrent
◦ in graph language: “feed-forward network” = connected, directed

acyclic graph which is equal to its own transitive reduction . . . ?
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network notation

notation from HH19
n` is number of neurons in layer ` = 1, . . . ,L
◦ ` = 1 is input layer
◦ input values are first-layer activations: x = a[1] ∈ Rn1

◦ ` = L is output layer
◦ output values are final-layer activations: y = a[L] ∈ RnL

activations in layer ` form a vector a[`] ∈ Rn`

◦ a[`]
j is activation of neuron j in layer `
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weight notation

weight w [`]
jk on the edge from neuron a[`−1]

k to neuron a[`]
j

thus

a[`]
j = σ

(n`−1∑
k=1

w [`]
jk a[`−1]

k + bj

)
which suggests matrix-vector multiplication!
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weight notation using vectors and matrices

one (row) vector of weights for each neuron
the inputs to the neurons in a layer are weighted by a matrix:

W [`] = (weights into layer `) =
[
w [`]

jk

]
◦ W [`] is n` × n`−1

assuming σ applied entrywise:

a[`] = σ
(

W [`]a[`−1] + b[`]
)

◦ bias vector b[`] ∈ Rn`
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forward pass = nonlinear-ized matrix multiplication

for this small L = 4 network:

y = a[4] = σ
(

W [4]a[3] + b[4]
)
= . . .

= σ
(

W [4]σ
(

W [3]σ
(

W [2]x + b[2]
)
+ b[3]

)
+ b[4]

)
over-simplified: σ(z) = z and b[`] = 0 implies y = W [4]W [3]W [2]x
feed-forward network = nonlinear- & affine-ized matrix product
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forward-pass neural network formulas

compute from input x = a[1] to output y = a[L] by layers:

a[`] = σ
(

W [`]a[`−1] + b[`]
)

for ` = 2,3, . . . ,L

◦ equation (3.2) in HH19

thus a forward pass is an obvious loop:

FORWARD(x):
a[1] = x
for ` = 2,3, . . . ,L:

z [`] = W [`]a[`−1] + b[`]

a[`] = σ
(
z [`]
)

return y = a[L]

◦ {W [`]} and {b[`]} are stored in some data structure
◦ σ(z) is implemented entrywise
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forward-pass computation work model (minor point)

work = number of floating-point operations
work at layer `:

2n[`−1]n[`] + O(n[`]) = O(n[`−1]n[`])

◦ using big-O in the “n→∞” limit of big layers
◦ evaluating activation functions is cheap
◦ the work at one layer is basically just a matrix-vector product

the total forward-pass work in an L-layer network is asymptotically
the same as L matrix-vector products:

L∑
`=2

O(n[`−1]n[`]) = O(Ln 2
max)

note: a forward pass is easily computed by GPU hardware
◦ versus solving linear systems . . .
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training is a biologically-motivated procedure

imagine teaching your dog to read numbers 1,2,3:

example training procedure:
1 randomly present one image of a digit from above

2 if dog barks correct number of times then gets treat

bark! bark! =⇒

3 otherwise move on to next image
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training yields persistant changes to brain

biological learning can last from hours to decades
something permanent/persistent changes within the brain
◦ but neuron excitation is electrical (activation is temporary),
◦ and neuron count is relatively fixed

training yields chemical or morpological changes in connections
between neurons, especially the synapses where the axon
connects to another neuron’s dendrite
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artificial neurons as a model of real neurons

but biological realism is not needed for machine learning!
we use a simplified artificial neuron:

◦ this model is merely a formula: a = σ

(
n∑

k=1

wk vk + b

)
however, training needs to make “permanent” changes in the
weights wk and biases b
after training, forward passes are the network’s “learned behavior”
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how does training work?

so, how does training work in artificial neural networks?
only considering supervised training here
given: N pieces of labeled data (pairs)

(x{i}, y{i}) for i = 1, . . . ,N

◦ x{i} ∈ Rn1 are the data
◦ y{i} ∈ RnL are the labels
◦ in a classification task, the y{i} only take on finitely-many values

observation: the labeled data determine the number of neurons in
the first and last layers
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example (classification task)

example classification task data (x{i}, y{i}) in one figure

◦ N = 10
◦ marker coordinates give x{i} ∈ [0,1]2

◦ marker type gives y{i}:

◦ : y{i} =
[
1
0

]
, × : y{i} =

[
0
1

]
◦ a neural net for this data must have n1 = nL = 2:
◦ ignore shading for now . . .
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a supervised training cost functional

supervised training means choosing the weights W [`] and
biases b[`], in all the layers, so as to approximately minimize the
average misfit between the the network output from input data
vector x{i} and the corresponding label vector y{i}

using the squared 2-norm for the misfit, this is a formula:

Cost =
1
N

N∑
i=1

1
2
‖y{i} − a[L](x{i})‖22

◦ a[L](x{i}) = output-layer activation from forward pass with input x{i}

◦ the Cost is a scalar-valued function (functional) of the weights and
biases
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better training notation

let’s give all the parameters a single-letter name:

p = {W [2],W [3], . . . ,W [L],b[2],b[3], . . . ,b[L]} ∈ Rs

◦ p collects all weight matrices and biases into one big column vector

define the cost (misfit) of the network for one data pair:

C{i}(p) =
1
2

∥∥∥y{i} − a[L](x{i};p)
∥∥∥2

2

key idea:

The output from a forward pass through the network, namely
a[L](x{i};p), depends both on the input data x{i} and all the
weights and biases p. We emphasize that the cost of one data
pair is a function of p: C{i}(p).
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cost functional = objective = average misfit

now define a total cost functional, or objective, C(p)
C(p) is the average misfit over all the labeled data:

C(p) =
1
N

N∑
i=1

C{i}(p)

=
1

2N

N∑
i=1

∥∥∥y{i} − a[L](x{i};p)
∥∥∥2

2
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training = nonlinear least-squares optimization

compare

C(p) =
1

2N

N∑
i=1

∥∥∥y{i} − a[L](x{i};p)
∥∥∥2

2

to “nonlinear least-squares” in a standard optimization textbook
(Nocedal & Wright, 2006; Chapter 10):

training a neural net is nonlinear least-squares optimization
◦
∥∥y{i} − a[L](x{i};p)

∥∥
2 is the residual norm for i th data

◦ it becomes zero when the network fully-learns the i th data
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fundamental idea: cost is a function of weights and biases

recall p = {W [2],W [3], . . . ,W [L],b[2],b[3], . . . ,b[L]}
the cost for one data pair is a function of p:

C{i}(p) =
1
2

∥∥∥y{i} − a[L](x{i};p)
∥∥∥2

2

that is, given parameters p, one forward pass through the network,
using input x{i}, is needed to evaluate C{i}(p)
from now on we simplify notation: a[L] = a[L](x{i};p)

Q. why is C(p) = 1
2N
∑N

i=1

∥∥y{i} − a[L]
∥∥2

2 a function of p?

a. because the activations of the final layer, namely a[L], are
determined by the weights and biases in the network
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gradient descent

our goal is to minimize C(p) =
1

2N

N∑
i=1

∥∥∥y{i} − a[L]
∥∥∥2

2

the function C(p) is differentiable
◦ why? what does this assume about the network?

. . . thus we can compute the gradient ∇C(p)
the gradient points up hill on the surface C : Rs → R,
natural idea: do gradient descent

GD(p):
for s = 1,2, . . . :

p ← p − η∇C(p)
return p
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gradient descent (GD) is miserable

GD(p):
for s = 1,2, . . . :

p ← p − η∇C(p)
return p

GD is simple to program
◦ . . . but it will always let you down

known issues with naive GD:
◦ it is not clear how far to step (how to set η?)

C(p), ∇C(p) provide no information
provable convergence requires a line search or trust region approach,
otherwise G(p) may not even decrease
η is called the learning rate in machine learning

◦ if GD converges, it may be to a local minimum only
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gradient descent in machine learning: the 2 insights

GD is widely used for training in machine learning (ML)
◦ a seminar priority?: GD limitations, modifications, alternatives

ML applies 2 “insights” (habits?) about how GD should work:

1 stochastic gradient descent: since N is big, and because
overfitting should be avoided, do not compute the whole gradient
∇C(p), but instead a randomly chosen ∇C{i}(p)
◦ i.e. choose data (x{i}, y{i}) and do

p ← p − η∇C{i}(p)

◦ or a choose a batch: p ← p − η 1
m

∑m
i=1∇C{ki}(p)

2 back-propagation: when computing ∇C{i}(p), regard the chain
rule as information which can be fed backward through the network
◦ back-propagation uses info found in computing forward for C{i}(p)
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stochastic gradient descent (SGD)

SGD(p):
for s = 1,2, . . . :

i = (random uniform from {1, . . . ,N})
p ← p − η∇C{i}(p)

return p

above is vanilla SGD
◦ note i is chosen with replacement

variations:
◦ choose i without replacement
◦ batching: p ← p − η 1

m

∑m
i=1∇C{ki}(p)

◦ online: N unknown; data pairs (x{i}, y{i}) are provided by a stream
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observations about the cost gradient

C(p) =
1
N

N∑
i=1

C{i}(p), C{i}(p) =
1
2

∥∥∥y{i} − a[L]
∥∥∥2

2

N = amount of training data ∴ N is (should be) large
gradient for one data pair:

∇C{i}(p) = ∇
[

1
2
(y{i} − a[L])>(y{i} − a[L])

]
= −

nL∑
j=1

(y{i}j − a[L]
j )∇a[L]

j

chain rule will be needed to expand further
◦ network output a[L]

j is a composition of matrix-vector products and
(nonlinear) σ applications

how to compute ∇a[L]
j efficiently? . . . time for the chain rule!
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interlude: the buzzword list

artificial neuron
◦ activation
◦ activation function

sigmoid, ReLU
◦ weight matrix
◦ bias vector

artificial neural network = ANN
◦ feed-forward network

training
◦ supervised learning
◦ labeled data
◦ nonlinear least-squares optimization

stochastic gradient descent = SGD
◦ learning rate

back-propagation = BP

machine learning = ML
◦ deep learning if L > 2

Ed Bueler (UAF) Getting started on machine learning Spring 2022 36 / 58



Outline

1 a single artificial neuron

2 forward through a neural net

3 training is optimization

4 backward through a neural net

5 running the codes yourself

6 future topics
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cost gradient with respect to weights and biases

recall:
◦ p = {W [2],W [3], . . . ,W [L],b[2],b[3], . . . ,b[L]} ∈ Rs is a grab-bag of

parameters

◦ cost for one pair (x{i}, y{i}): C{i}(p) =
1
2

∥∥∥y{i} − a[L]
∥∥∥2

2

want: ∇C{i}(p) =
[
∂C{i}

∂p1
, . . . ,

∂C{i}

∂ps

]
the components of this gradient come in two types:

∂C{i}

∂w [`]
jk

,
∂C{i}

∂b[`]
j
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chain rule on the cost (for the last layer)

recall: z [L]
j =

nL−1∑
k=1

w [L]
jk a[L−1]

k + b[L]
j

expand the 2-norm and the activation in the one-pair cost formula:

C{i}(p) =
1
2

nL∑
j=1

(y{i}j − σ(z [L]
j )︸ ︷︷ ︸

=a[L]
j

)2

thus by the chain rule:

∂C{i}

∂w [L]
jk

=
∂C{i}

∂z [L]
j

∂z [L]
j

∂w [L]
jk

=
∂C{i}

∂z [L]
j

a[L−1]
k

∂C{i}

∂b[L]
j

=
∂C{i}

∂z [L]
j

∂z [L]
j

∂b[L]
j

=
∂C{i}

∂z [L]
j

◦ the boxed quantity shows up a lot, so it gets a name . . .
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chain rule on the cost

define, following HH19:

δ
[`]
j =

∂C{i}

∂z [`]
j

◦ this definition is for any layer `
◦ remember that this is for one data pair (x{i}, y{i})

for the final layer ` = L we already have:

δ
[L]
j = −(y{i}j − a[L]

j )σ′(z [L]
j )

∂C{i}

∂w [L]
jk

= δ
[L]
j a[L−1]

k

∂C{i}

∂b[L]
j

= δ
[L]
j
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chain rule on the cost

to go further back into the network, follow multiple routes:

a[L]
j depends on a[L−1]

k for different k, then a[L−1]
k depends on

a[L−2]
s for different s, . . .

example: what is derivative of cost C{i} with respect to w [3]
43 ?
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find inside the chain rule: multiplication by the transpose

example. L = 4; consider a weight into layer ` = 3:

∂C{i}

∂w [3]
jk

=
∂C{i}

∂z [3]
j︸ ︷︷ ︸

multi−route

∂z [3]
j

∂w [3]
jk︸ ︷︷ ︸

easy

= δ
[3]
j a[2]

k

but δ[3]j relates to the next-layer deltas δ[4] by matrix multiplication:

δ
[3]
j =

∂C{i}

∂z [3]
j

=

n4∑
s=1

∂C{i}

∂z [4]
s

∂z [4]
s

∂z [3]
j

=

n4∑
s=1

δ
[4]
s
∂z [4]

s

∂a[3]
j

∂a[3]
j

∂z [3]
j

=

n4∑
s=1

δ
[4]
s w [4]

sj σ
′(z [3]

j ) =
(
(W [4])>δ[4]

)
j
σ′(z [3]

j )
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the heart of back-propagation

define the entrywise (Hadamard?) product of vectors x , y ∈ Rm:

(x ◦ y)j = xjyj

Lemma

the vector δ[`] =

∂C{i}

∂z [`]
j

 ∈ Rn` can be computed by (back-)

multiplying the weight matrix transposes (adjoints):

δ[L] = σ′(z [L]) ◦ (a[L] − y{i}),

δ[`] = σ′(z [`]) ◦ (W [`+1])>δ[`+1]︸ ︷︷ ︸
matrix-vector product

, ` = L− 1,L− 2, . . . ,2

key point: start with last layer ` = L and count down to ` = 2
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back-propagation provides the cost gradient

Corollary

once the δ[`] are calculated, all components of the gradient are easy:

∂C{i}

∂w [`]
jk

= δ
[`]
j a[`−1]

k ,
∂C{i}

∂b[`]
j

= δ
[`]
j

for ` = 2, . . . ,L

observation: as a matrix,

∂C{i}

∂W [`]
= δ[`]

(
a[`−1]

)>
is a rank-one outer product

Ed Bueler (UAF) Getting started on machine learning Spring 2022 44 / 58



pseudocode: forward pass with back-propagation

from x , y and p = {W [`],b[`]} compute C(p) and ∇C(p):

FORBACK(x , y ,W [`],b[`]):
a[1] = x
for ` = 2, . . . ,L:

z [`] = W [`]a[`−1] + b[`]

a[`] = σ(z [`]), r [`] = σ′(z [`])

C = 1
2‖y − a[L]‖22

δ[L] = r [L] ◦ (a[L] − y)
for ` = L, . . . ,2:

if ` < L:
δ[`] = r [`] ◦ (W [`+1])>δ[`+1]

∂C
∂W [`] = δ[`](a[`−1])>

∂C
∂b[`] = δ[`]

return C,
{

∂C
∂W [`]

}
,
{

∂C
∂b[`]

}
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we are ready to train an ANN

we are ready to train a network, e.g. on a classification task:

one could call FORBACK() in a SGD training loop:

for s = 1,2, . . .
i = (random uniform from {1, . . . ,N})
C{i}, ∂C{i}

∂W [`] ,
∂C{i}
∂b[`] = FORBACK(x{i}, y{i}, . . . )

W [`] ←W [`] − η ∂C{i}
∂W [`]

b[`] ← b[`] − η ∂C{i}
∂b[`]

also natural to combine in one loop: (forward pass) + BP + SGD
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pseudocode: training using SGD and BP

integrate SGD into the FORBACK() loop; see netbp.m in HH19:

TRAINING({x{i}}, {y{i}}, {W [`]}, {b[`]}):
for s = 1,2, . . .

i = (random uniform from {1, . . . ,N})
a[1] = x{i}

for ` = 2, . . . ,L:
z [`] = W [`]a[`−1] + b[`]

a[`] = σ(z [`]), r [`] = σ′(z [`])

δ[L] = r [L] ◦ (a[L] − y{i})
for ` = L, . . . ,2:

if ` < L:
δ[`] = r [`] ◦ (W [`+1])>δ[`+1]

W [`] ←W [`] − η δ[`](a[`−1])>

b[`] ← b[`] − η δ[`]

return {W [`]}, {b[`]}
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Outline

1 a single artificial neuron

2 forward through a neural net

3 training is optimization

4 backward through a neural net

5 running the codes yourself

6 future topics
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Matlab implementations

HH19 includes a Matlab implementation of TRAINING() for the
small (L = 4) ANN and classification task I have been showing
see netbp.m and netbpfull.m at

www.maths.ed.ac.uk/∼dhigham/algfiles.html
I rewrote this code for my own amusement; see example1.m at

github.com/bueler/ml-seminar/tree/main/talk1/code

◦ my codes are tested in both Matlab and Octave

as a UAF person you have access to Matlab online if you want it
matlab.mathworks.com

from now on, I’ll assume you can run these things
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HH19 code netbp.m fits on one page

...
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running netbp.m

run graphics version of netbp.m in Matlab online:
>> tic, netbpfull, toc

... spews cost values
Elapsed time is 148.599924 seconds.

does 106 SGD iterations . . . that’s not great for a small network

result: right figure below shows the contour where a[4]
1 > a[4]

2

my octave version produces similar result in similar time
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Outline

1 a single artificial neuron

2 forward through a neural net

3 training is optimization

4 backward through a neural net

5 running the codes yourself

6 future topics
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there is so much more to say

please actually read HH19?
next are 4 topics which might catch your interest as a talk
◦ these topics have math inside!
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convolutional neural networks (CNN)

based on discrete convolution of time series and images
◦ a talk to explain convolution, sans neural nets?

CNNs win at image classification
example given in HH19
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autoencoders

one form of unsupervised training
fit the identity map with a fancy nonlinear function (!)

Ed Bueler (UAF) Getting started on machine learning Spring 2022 55 / 58



support vector machines

recall: “single layer perceptrons can’t compute XOR”
◦ linearly-separable classification problems

support vector machines (SVM)
◦ add stable optimality to linearly-separable classification
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stochastic optimization

stochastic optimization
◦ the objective function is random; the goal is to minimize the

expected objective value
◦ SGD is well-suited for this goal?

online machine learning model
improvements on SGD
◦ momentum
◦ dropout
◦ Adam (→), and etc.
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additional topics?

recurrent neural networks
graph neural networks
algorithmic/automatic differentiation
classical nonlinear least-squares methods
◦ Gauss-Newton
◦ Levenberg-Marquardt

classical optimization: Newton-type methods
◦ quasi-Newton methods, especially L-BFGS

and on and on through the buzzwords . . .

Ed Bueler (UAF) Getting started on machine learning Spring 2022 58 / 58


	a single artificial neuron
	forward through a neural net
	training is optimization
	backward through a neural net
	running the codes yourself
	future topics

