Assignment #6

Due Wednesday, 9 October 2019, at the start of class

The problems below are all from Chapter 7.

One exercise below is identified with your initials. Please $\[Mathbb{E}T_EX\]$ this problem and send both the .tex and .pdf to me at elbueler@alaska.edu by the same due date as above. See the course website for a $\[Mathbb{E}T_EX\]$ template.

DO THE FOLLOWING EXERCISES from the textbook:¹

CHAPTER 7

- Exercise A. Suppose $f : [a, b] \to \mathbb{R}$ is continuous and differentiable on (a, b), and satisfies f(a) < 0, f(b) > 0. Suppose there are constants m, M so that $0 < m \le f'(x) \le M$ for all $x \in (a, b)$.
 - (a) Show that there is a unique solution x^* to f(x) = 0 on [a, b].
 - (b) Show that if $0 < \lambda < 2/M$ then the function $\varphi(x) = x \lambda f(x)$ has a unique fixed point on [a, b].
 - (c) Also show that if $x_0 \in [a, b]$ then $\varphi^n(x_0) \to x^*$. Then estimate the error $|\varphi^n(x_0) x^*|$ in terms of the first increment $|\varphi(x_0) x_0|$.

(A fixed-point iteration using $\varphi(x) = x - \lambda f(x)$ is sometimes called a quasi-Newton method for solving f(x) = 0. Do you see the connection to the Newton method?)

- Exercise #35 on page 97.
- Exercise #41 on page 102. \leftarrow AM
- Exercise #42 on page 102.
- Exercise #44 on page 105. \leftarrow **DD**
- Exercise #48 on page 105. \leftarrow WV

¹Carothers, *Real Analysis*, Cambridge University Press 2000.