
A Hilbert Space Alphabet
(or: the correct sequence in which to introduce Hilbert spaces)

Ed Bueler (March 23, 2020)

I have already made video lectures for this material, and this is not a replacement for that mate-
rial! Indeed, you do not have to read it, but it might be useful for review or clarification.

Looking back, I did not do things in the correct sequence. This short document shows a better
sequence in which to introduce Hilbert spaces, up to the point where we start discussing operators
on such spaces. The sequence here is superior to how our textbook by Muscat1 did it. (How Muscat
names things, e.g. confusing Bessel’s inequality and Parseval’s identity, irritates me.) It is certainly
more efficient than the way I did it in the video lectures. The sequence here is close to the way the
material is presented by Reed & Simon,2 an excellent textbook.

Often the proof or presentation given by Muscat is just fine, so I just cite it. Regarding which
material is different, and more efficient, see D–G and U–Z.

A. Define a C-inner product space (X, 〈·, ·〉). The inner product is a sequilinear and positive-
definite form; it is conjugate-linear in the first position. See Muscat page 171.

B. Define the norm symbols ‖x‖ =
√
〈x, x〉. However, this is not a norm because we have not

proven triangle inequality (yet).

C. Define orthogonal vectors: 〈u, v〉 = 0. Define orthonormal (ON) set: {ei}i∈I such that 〈ei, ej〉 = 0 if
i 6= j and ‖ei‖ = 1. Note that the index set I in this definition can be any set, even uncountable.

D. Pythagorean Theorem. If X is an inner product space and u, v ∈ X are orthogonal then ‖u +

v‖2 = ‖u‖2 + ‖v‖2.

proof. 〈u+ v, u+ v〉 = 〈u, u〉+ 2Re 〈u, v〉+ 〈v, v〉 = 〈u, u〉+ 〈v, v〉.

E. Corollary (extended Pythagorean Theorem). If X is an inner product space, {ei}ni=1 is a finite ON
set, and x ∈ X then

‖x‖2 =
n∑

i=1

| 〈ei, x〉 |2 +

∥∥∥∥∥x−
n∑

i=1

〈ei, x〉 ei

∥∥∥∥∥
2

proof. Let u =
∑n

i=1 〈ei, x〉 ei and v = x −
∑n

i=1 〈ei, x〉 ei. Clearly x = u + v. Easy calculations
show that 〈u, v〉 = 0 and that ‖u‖2 =

∑n
i=1 | 〈ei, x〉 |2. The result follows by the Pythagorean

Theorem.
1J. Muscat, Functional Analysis: An Introduction to Metric Spaces, Hilbert Spaces, and Banach Algebras, Springer, 2014
2M. Reed and B. Simon, Functional Analysis, Methods of Modern Math. Phys. I, Academic Press 1980

1



F. Corollary (Bessel’s inequality). If X is an inner product space and {ei}ni=1 is a finite ON set and
x ∈ X then

‖x‖2 ≥
n∑

i=1

| 〈ei, x〉 |2

proof. Drop a term in the previous result.

G. Corollary (Cauchy-Schwarz). If X is an inner product space and x, y ∈ X then

| 〈x, y〉 | ≤ ‖x‖‖y‖.

proof. If y = 0 the result is immediate. Otherwise, {y/‖y‖} is an ON set with one element.

Thus by Bessel’s inequality, ‖x‖2 ≥
∣∣∣〈 y
‖y‖ , x

〉∣∣∣2 = |〈y,x〉|2
‖y‖2 . The result follows by clearing de-

nominators.

H. Corollary (Triangle inequality). If X is an inner product space and x, y ∈ X then

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

proof. By Cauchy-Schwarz,

‖x+ y‖2 = ‖x‖2 + 2Re 〈x, y〉+ ‖y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2 .

I. Corollary. An inner product space is a normed vector space, thus a metric space. The inner
product is continuous.

J. Parallelogram law. If X is an inner product space and x, y ∈ X then

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

proof. This is an easy computation: expand the left side and get the right side.

note. In fact, the parallelogram law characterizes inner product spaces among the normed
vector spaces. This was proven by P. Jordan & J. von Neumann (1935). And there is a fancy
polarization formula. However, don’t get distracted by that; keep going!

K. Define Hilbert space: A C-inner product space (X, 〈·, ·〉) is a Hilbert space if it is complete as a
normed vector space.

L. Define convex: Given a normed vector space X , a subset A ⊂ X is convex if 0 ≤ λ ≤ 1 and
u, v ∈ A imply λu+ (1− λ)v ∈ A.

M. Fundamental Theorem of Optimization. If H is a Hilbert space, A ⊂ H is a closed and convex
subset, and x ∈ H then there is a unique y∗ ∈ A such that ‖x− y∗‖ ≤ ‖x− y‖ for all y ∈ A.

proof. This is Theorem 10.11 in Muscat. The proof uses the parallelogram law, the complete-
ness of H , the closedness of A, and the convexity of A.

note. I assert this is a good name for the theorem, especially in infinite dimensions, but it is
not universal.
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N. Define A-perp: If X is an inner product space and A ⊂ X is any subset then

A⊥ = {x ∈ X : 〈x, a〉 = 0 for all a ∈ A} .

O. Lemma. If X is an inner product space and A ⊂ X is any subset then A⊥ is a closed linear

subspace of X and A⊥ = (spanA)
⊥

.

proof. This is Proposition 10.9 in Muscat. The proof uses the continuity of the inner product.

P. Theorem (orthogonal decomposition and projection). If H is a Hilbert space, M ⊂ H is a closed
linear subspace, x ∈ H , and y ∈M then

(y is the closest point in M to x) ⇐⇒ x− y ∈M⊥.

Furthermore, H =M ⊕M⊥. Finally, P : x 7→ y, where y is the closest point in M to x, defines
P ∈ B(H), an orthogonal projection onto M .

proof. This is Theorem 10.12 in Muscat. The proof starts with the Pythagorean theorem. The
fundamental theorem of optimization (and the completeness of H and closedness of M ) is
needed so that a closest point exists.

note. The definition of “orthogonal projection onto M” is that M = imP , P 2 = P , and for all
x ∈ H we have x − Px ⊥ M . Once adjoints are defined, one shows that the last condition is
equivalent to P ∗ = P .

Q. Lemma. If X is an inner product space, X∗ is the dual space of continuous linear functionals,
and x ∈ X then φ(y) = 〈x, y〉 defines φ ∈ X∗, and furthermore ‖φ‖ = ‖x‖.

proof. By Cauchy-Schwarz, |φ(y)| = | 〈x, y〉 | ≤ ‖x‖‖y‖, thus φ is continuous and ‖φ‖ ≤ ‖x‖.
Also ‖φ‖ = supy 6=0

|〈x,y〉|
‖y‖ ≥ ‖x‖ by choosing y = x.

R. Define the Riesz map: If X is an inner product space then

J : X → X∗

x 7→
[
x∗ : y 7→ 〈x, y〉

]
S. Riesz Representation Theorem. If H is a Hilbert space then the Riesz map J : H → H∗ is

bijective, conjugate-linear, and isometric.

proof. This is Theorem 10.16 in Muscat. The proof uses the definition ofM⊥ forM = kerφ and
φ ∈ H∗. The continuity of φ shows M is closed so H =M ⊕M⊥ because H is a Hilbert space.
(We can use orthogonal decomposition.) Thus J is onto. The Lemma shows J is isometric.
The remaining properties of J follow from easy calculations.

note. Thus every continuous linear functional on H has a unique representative in H .

T. Gram-Schmidt process. Recall that if X is an inner product space and (vi) is any sequence in X ,
finite or countable, then we can construct an ON set {ei} with same span as {vi}. Thus ON
sets are plentiful, but the question is whether any ON set is big enough to be a “basis”.
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U. Define orthonormal (ON) basis: If X is an inner product space and S = {ei}i∈I ⊂ X is an ON
set then we say S is an orthonormal basis if the span of S is dense, spanS = X .

note. The index set I here is arbitrary, possibly uncountable. Recall that spanS is the set of
finite linear combinations, while spanS includes (countably) infinite sums.

V. Theorem. Every Hilbert space has an ON basis.

proof. The proof is summarized on page 202 of Muscat. This is a Hausdorff maximality prin-
ciple argument, that is, it uses the Axiom of Choice. Note that if the Hilbert space is infinite-
dimensional then the ON basis might have uncountably-many elements. Completeness is
used to show that if E⊥ = 0 then spanE = H .

W. Lemma. If H is a Hilbert space and {ei} is a countable ON set then( ∞∑
i=1

αiei converges in H for αi ∈ C

)
⇐⇒ (αi) ∈ `2.

proof. This is Proposition 10.30 in Muscat. The proof uses the Pythagorean theorem and the
completeness of H and `2.

X. Theorem. If H is a Hilbert space, {ei} is a countable ON basis, and x ∈ H then

x =
∞∑
i=1

〈ei, x〉 ei.

proof. Bessel’s inequality is used to show that the partial sums converge (because they are
Cauchy) to some y ∈ H . But x− y ∈ {ei}⊥, which is {0} because span{ei} is dense. (Compare
Theorem 10.31 in Muscat.)

note. The hypotheses here require H to be a separable Hilbert space.

Y. Parseval’s identities. If H is a Hilbert space, {ei} is a countable ON basis, and x, y ∈ H then

‖x‖2 =
∞∑
i=1

| 〈ei, x〉 |2, 〈x, y〉 =
∞∑
i=1

〈x, ei〉 〈ei, y〉

proof. This is Proposition 10.29 in Muscat.

note. Now we know that every separable Hilbert space is isometrically isomorphic to `2.

Z. Corollary. A countable ON basis of a Hilbert space is a Schauder basis. Every separable Hilbert
space has a Schauder basis.

note. This is a better situation than with Banach and other normed vector spaces, because not
every separable Banach space has a Schauder basis (Enflo, 1973). Recall that a sequence (ei)

in a normed vector spaceX is a Schauder basis if ‖ei‖ = 1 and if for any x ∈ X there are unique
coefficients αi ∈ C so that x =

∑∞
i=1 αiei. If X has a Schauder basis then X is separable.

That is the end because I have run out of letters. However, this is also the point at which one
starts looking at operators. One defines the adjoint by saying that if T ∈ B(X,Y ), for Hilbert spaces
X,Y , and if y ∈ Y then T ∗y = w ∈ X where w represents (i.e. Riesz theorem) φ(x) = 〈y, Tx〉,
φ ∈ X∗. Thus T ∗ ∈ B(Y,X) and 〈T ∗y, x〉 = 〈y, Tx〉. One can then define self-adjoint, unitary, and
normal elements, and proceed to spectral theory and C∗-algebras. Which we plan to do.
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