Assignment #3

Due Monday, 10 February 2020, at the start of class

Please read Chapter 8 of the textbook. Also review the slides *Finite-dimensional spectral* theory I at bueler.github.io/M617S20/slides1.pdf

One exercise below is identified with your initials. Please LATEX this problem and send both the .tex and .pdf to me at elbueler@alaska.edu by the due date. See the course website for a LATEX template.

DO THE FOLLOWING EXERCISES from the textbook (Muscat, Functional Analysis, 2014):

- #1 in Exercises 8.10, pages 125–126.
- #3 in Exercises 8.10, page 126. There are several things to prove. Operator L is defined on page 118.
- #4 in Exercises 8.10, page 126.
- #5 in Exercises 8.10, page 126. Note ℓ_1^1 is defined in #4.
- #10 in Exercises 8.10, page 126. \leftarrow DD
- #12 in Exercises 8.10, page 126. \leftarrow WV
- #19 in Exercises 8.10, page 127. \leftarrow **OS**
- #4 in Exercises 8.14, page 129. *Prove both claims in the last sentence.*

ALSO DO THE FOLLOWING EXERCISE:

• Exercise B. Consider the inner product space $V = L^2([0,\infty), e^{-x})$, that is, the set of a.e. equivalence classes of measurable functions $f : [0,\infty) \to \mathbb{C}$ such that $\int_0^\infty |f(x)|^2 e^{-x} dx < \infty$, and with inner product and norm

$$\langle f,g \rangle = \int_0^\infty \overline{f(x)}g(x) e^{-x} dx, \quad ||f|| = \left(\int_0^\infty |f(x)|^2 e^{-x} dx\right)^{1/2}.$$

(In fact V is a Hilbert space (Chapter 10), but this exercise does not use completeness.)

- (a) Show that monomials x^n , for n = 0, 1, 2, ..., are in V.
- (b) Show that the set of monomials {1, x, x², x³, ...} is linearly-independent in *V*. (*Hint*. Consider lim_{x→∞} xⁿ⁺¹/|p(x)| if p(x) is a nonzero polynomial of degree at most n. This shows xⁿ⁺¹ is not in the span of {1, x, ..., xⁿ}.)
- (c) Apply the Gram-Schmidt process in *V* to the set $S = \{1, x, x^2, x^3\}$ to compute polynomials $\hat{L}_0(x)$, $\hat{L}_1(x)$, $\hat{L}_2(x)$, $\hat{L}_3(x)$ which are orthonormal (ON) and span the space of degree 3 polynomials.
- (d) Renormalize the polynomials $\hat{L}_j(x)$ to a new set $L_0(x), L_1(x), L_2(x), L_3(x)$ such that $L_j(0) = 1$. These are the first four *Laguerre* polynomials; check your work at en.wikipedia.org/wiki/Laguerre_polynomials
- EC. (Extra Credit) Write a short MATLAB program which approximates and plots the polynomials $L_i(x)$. (*My code is six short lines*.)