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example linear systems

suppose we want to solve the linear system

Ax = b (1)

where A ∈ Rm×m and b ∈ Rm, to find x ∈ Rm.
throughout these notes we use just two examples:
LS1 2 1 0

0 2 1
1 0 3

x1

x2

x3

 =

2
1
4


LS2 

1 2 3 0
2 1 −2 −3
−1 1 1 0
0 1 1 −1




x1

x2

x3

x4

 =


7
1
1
3


on P17 (Assignment #5) you will check that these are well-conditioned
linear systems
it is trivial to find solutions of LS1, LS2 using a “x = A\b” black box, but
these examples stand-in for the large linear systems we get from
applying FD schemes to ODE and PDE problems
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residual

the residual of a vector v in linear system (1) is the vector

r(v) = b− Av (2)

making the residual zero is the same as solving the system:

Ax = b ⇐⇒ r(x) = 0

evaluating r(v) needs a matrix-vector product and a vector subtraction
◦ requires O(m2) operations at worst
◦ by comparison, applying Gauss elimination to solve linear system (1) is an

O(m3) operation in general

FD schemes for DEs generate matrices A for which the majority, often
99% or more, of the entries are zero
◦ a matrix with enough zeros to allow exploitation of that fact is called sparse
◦ evaluating the residual of a sparse matrix typically requires O(m) operations
◦ even if A is sparse, A−1 is generally dense, i.e. most entries are nonzero
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Richardson iteration

iterative methods for linear system (1) attempt to solve it based only on
operations like computing the residual, or applying A to a vector
◦ one wants the sequence of approximations, the iterates, to converge to the

solution x = A−1b
◦ Iterative methods always require an initial iterate x0

Richardson iteration adds a multiple ω of the last residual at each step:

xk+1 = xk + ω(b− Axk ) (3)

for system LS1, using initial iterate x0 = 0 and ω = 1/5, (3) gives:

x0 =

0
0
0

 , x1 =

0.4
0.2
0.8

 , x2 =

 0.6
0.16
1.04

 , x3 =

0.728
0.088
1.096

 , . . . , x10 =

 0.998
−0.017

1.01

 , . . .
these iterates seem to be converging to x = [1 0 1]>, which is the solution to LS1
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recall: eigenvalues and vectors

a complex number λ ∈ C is an eigenvalue of a square matrix B ∈ Rm×m if
there is a nonzero vector v ∈ Cm so that Bv = λv
the set of all eigenvalues of B is the spectrum σ(B) of B
the spectral radius ρ(B) is the maximum absolute value of an eigenvalue:

ρ(B) = max
λ∈σ(B)

|λ|

even if B is real, λ may be complex—the roots of a polynomial with real
coefficients may be complex—and if λ is complex and B is real then v
must be complex
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spectral properties and convergence of iterations

properties of a matrix B described in terms of eigenvalues are generically
called spectral properties
some examples:
◦ ρ(B)
◦ ‖B‖2 =

√
ρ(B>B)

◦ the 2-norm condition number κ(B) = ‖B‖2‖B−1‖2

a general idea:
whether an iterative method for solving Ax = b converges, or
not, depends on spectral properties of A, or on matrices built
from A

the right-hand side b and the initial iterate x0 generally do not determine
whether an iteration converges
◦ a good choice of x0 can speed up convergence
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convergence of the Richardson iteration

rewrite the Richardson iteration (3) as

xk+1 = (I − ωA)xk + ωb

the lemma on the next slide shows that the Richardson iteration
converges if and only if all the eigenvalues of the matrix I − ωA are inside
the unit circle:

(3) converges if and only if ρ(I − ωA) < 1

◦ ρ(I − ωA) < 1 means (I − ωA)xk is smaller in magnitude than xk

◦ if ‖I − ωA‖ < 1 then (3) converges1

1recall ρ(B) ≤ ‖B‖ in any induced matrix norm
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convergence lemma

Lemma

yk+1 = Myk + c

converges to the solution of y = My + c for all initial y0 if and only if

ρ(M) < 1.

Proof.
Solve the iteration by writing out a few cases:

y2 = M(My0 + c) + c = M2y0 + (I + M)c,

y3 = M(M2y0 + (I + M)c) + c = M3y0 + (I + M + M2)c,

...

By induction we get yk = Mk y0 + pk (M)c where pk (x) = 1 + x + x2 + · · ·+ xk−1. But
pk (x)→ 1/(1− x) as k →∞ iff x ∈ (−1, 1). Also, ρ(M) < 1 iff Mk → 0. Thus
yk → (I −M)−1c iff ρ(M) < 1.
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convergence of the Richardson iteration 2

since the Richardson iteration converges iff ρ(I − ωA) < 1, we choose ω
based on the principle that

ωA should be close to the identity I
◦ often not possible!

in small cases we can graph f (ω) = ρ(I − ωA):

omega = -1:.01:1;
rho = zeros(size(omega));
for j = 1:length(omega)

M = eye(n) - omega(j) * A;
rho(j) = max(abs(eig(M)));

end
plot(omega,rho)

for LS1: ρ(I − ωA) dips below 1 for 0 < ω . 0.6

for LS2: ρ(I − ωA) ≥ 1 always -1 -0.5 0 0.5 1
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note ρ(I − 0A) = 1 . . . so no convergence when ω ≈ 0
for LS1, figure suggests ω ≈ 0.4 gives fastest convergence
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matrix splitting

unlike Richardson, most classical iteration methods “split” the matrix A
before iterating
the best known, and simplest, iteration based on splitting is Jacobi
iteration, which extracts the diagonal of A (and inverts it)
the splitting we consider is

A = D − L− U
where
◦ D is the diagonal of A
◦ L is strictly lower triangular (`ij = 0 if i ≤ j)
◦ U is strictly upper triangular (uij = 0 if i ≥ j)

you can split any matrix this way
see section 4.2 of the textbook

so that D is an invertible matrix, for the remaining slides we assume
all diagonal entries of A are nonzero: aii 6= 0
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Jacobi iteration

the Jacobi iteration is

Dxk+1 = b + (L + U)xk (4)

if it converges then Dx = b + (L + U)x, which is the same as Ax = b
we could also write it as xk+1 = D−1 (b + (L + U)xk ) or as

x (k+1)
i =

1
aii

bi −
∑
j 6=i

aijx
(k)
j

 (5)

where x (k)
j denotes the j th entry of the k th iterate xk

make sure you understand why (4) and (5) are the same!
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Gauss-Seidel iteration

Gauss-Seidel iteration extracts the non-strict lower-triangular part of A
(and inverts it)
again if A = D − L− U then it is

(D − L)xk+1 = b + Uxk (6)

we could also write it “ xk+1 = (D − L)−1 (b + Uxk ) ” but that would
miss the point!
instead we write it as Dxk+1 = b + Uxk + Lxk+1 or equivalently:

x (k+1)
i =

1
aii

bi −
∑
j>i

aijx
(k)
j −

∑
j<i

aijx
(k+1)
j

 (7)

the lower-triangular entries of A apply to those entries of xk+1 which have
already been computed
form (7) is actually easier to implement than Jacobi (5) (why?)
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convergence conditions for Jacobi and Gauss-Seidel

the convergence lemma says that
◦ Jacobi iteration converges if and only if ρ(D−1(L + U)) < 1
◦ Gauss-Seidel iteration converges if and only if ρ((D − L)−1U) < 1

these conditions are hard to use in practice because computing a
spectral radius can be just as hard as solving the original system
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diagonally-dominant matrices

definition. A is strictly diagonally-dominant if |aii | >
∑

j 6=i |aij |
◦ LS1 is strictly diagonally-dominant
◦ LS2 is not

two relatively-famous theorems2 are these:
◦ theorem. if A is strictly diagonally-dominant then both the Jacobi and

Gauss-Seidel iterations converge
◦ Theorem. if A is symmetric positive definite then Gauss-Seidel iteration

converges

unlike the “ρ(. . . ) < 1” conditions on the last slide:
◦ it is easy to check diagonal-dominance, and it is a common property of the

matrices coming from FD schemes on ODEs and PDEs
◦ these are only sufficient conditions, e.g. there are nonsymmetric A, which

are not diagonally-dominant, but for which the iterations converge

see problems P19 and P20

2section 11.2 of Golub and van Loan, Matrix Computations, 4th edition 2013
Ed Bueler (MATH 615 NADEs) Classical iterative methods for linear systems Spring 2017 14 / 17



past

the Jacobi and Gauss-Seidel iterations are from the 19th century
◦ Richardson iteration first appears in a 1910 publication

the early history of numerical partial differential equations, e.g. in the
1920 to 1970 period, heavily used these classical iterations
◦ a generalization of Gauss-Seidel iteration called successive over-relaxation,

was a particular favorite around 1970; see section 4.2 of the textbook

none of these iterations work on system LS2
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recent past and future

there are better iterative ideas, and they flourished starting in the
1980-90s . . . and far into the future
◦ among the best known are CG = conjugate gradients (actually from

1950-60s) and GMRES = generalized minimum residuals (from a 1986
paper by Saad and Schultz)

◦ GMRES works (i.e. converges at some rate) on LS2
◦ but there can be no “good iteration” with a universally-fast convergence rate3

iteration to solve linear systems is the future:
◦ it is obligatory on sufficiently-big systems
◦ it works better in parallel than direct methods like Gauss elimination
◦ it can exploit partial knowledge of the underlying model

3remarkably, there is a 1992 theorem by Nachtigal, Reddy, and Trefethen that says this
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biographies

Gauss (1777–1855) did big stuff, not just the little Gauss-Seidel thing:
en.wikipedia.org/wiki/Carl_Friedrich_Gauss

Jacobi (1804–1851) also has his name on the “Jacobian”, the matrix of
derivatives appearing in Newton’s method for systems of equations:

en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi

Seidel (1821–1896) is relatively little known:
en.wikipedia.org/wiki/Philipp_Ludwig_von_Seidel

Richardson (1881–1953) is the most interesting. He invented numerical weather
forecasting, doing it by-hand for fun during WWI. Later, as a pacifist and quaker,
he quit the subject entirely when he found his meteorological work was of most
value to chemical weapons engineers and the British Air Force:

en.wikipedia.org/wiki/Lewis_Fry_Richardson
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