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example linear systems

suppose we want to solve the linear system

Ax = b (1)

where A ∈ Rm×m and b ∈ Rm, to find x ∈ Rm.
throughout these notes we use just two examples:
LS1 2 1 0

0 2 1
1 0 3

x1

x2

x3

 =

2
1
4


LS2 

1 2 3 0
2 1 −2 −3
−1 1 1 0
0 1 1 −1




x1

x2

x3

x4

 =


7
1
1
3


on P17 (Assignment #5) you will check that these are well-conditioned
linear systems
it is trivial to find solutions of LS1, LS2 using a “x = A\b” black box, but
these examples stand-in for the large linear systems we get from
applying FD schemes to ODE and PDE problems
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residual

the residual of a vector v in linear system (1) is the vector

r(v) = b− Av (2)

making the residual zero is the same as solving the system:

Ax = b ⇐⇒ r(x) = 0

evaluating r(v) needs a matrix-vector product and a vector subtraction
◦ requires O(m2) operations at worst
◦ by comparison, applying Gauss elimination to solve linear system (1) is an

O(m3) operation in general

FD schemes for DEs generate matrices A for which the majority, often
99% or more, of the entries are zero
◦ a matrix with enough zeros to allow exploitation of that fact is called sparse
◦ evaluating the residual of a sparse matrix typically requires O(m) operations
◦ even if A is sparse, A−1 is generally dense, i.e. most entries are nonzero
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Richardson iteration

iterative methods for linear system (1) attempt to solve it based only on
operations like computing the residual, or applying A to a vector
◦ one wants the sequence of approximations, the iterates, to converge to the

solution x = A−1b
◦ Iterative methods always require an initial iterate x0

Richardson iteration adds a multiple ω of the last residual at each step:

xk+1 = xk + ω(b− Axk ) (3)

for system LS1, using initial iterate x0 = 0 and ω = 1/5, (3) gives:

x0 =

0
0
0

 , x1 =

0.4
0.2
0.8

 , x2 =

 0.6
0.16
1.04

 , x3 =

0.728
0.088
1.096

 , . . . , x10 =

 0.998
−0.017

1.01

 , . . .
these iterates seem to be converging to x = [1 0 1]>, which is the solution to LS1
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recall: eigenvalues and vectors

a complex number λ ∈ C is an eigenvalue of a square matrix B ∈ Rm×m if
there is a nonzero vector v ∈ Cm so that Bv = λv
the set of all eigenvalues of B is the spectrum σ(B) of B
the spectral radius ρ(B) is the maximum absolute value of an eigenvalue:

ρ(B) = max
λ∈σ(B)

|λ|

even if B is real, λ may be complex—the roots of a polynomial with real
coefficients may be complex—and if λ is complex and B is real then v
must be complex
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spectral properties and convergence of iterations

properties of a matrix B described in terms of eigenvalues are generically
called spectral properties
some examples:
◦ ρ(B)
◦ ‖B‖2 =

√
ρ(B>B)

◦ the 2-norm condition number κ(B) = ‖B‖2‖B−1‖2

a general idea:
whether an iterative method for solving Ax = b converges, or
not, depends on spectral properties of A, or on matrices built
from A

the right-hand side b and the initial iterate x0 generally do not determine
whether an iteration converges
◦ a good choice of x0 can speed up convergence
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convergence of the Richardson iteration

rewrite the Richardson iteration (3) as

xk+1 = (I − ωA)xk + ωb

the lemma on the next slide shows that the Richardson iteration
converges if and only if all the eigenvalues of the matrix I − ωA are inside
the unit circle:

(3) converges if and only if ρ(I − ωA) < 1

◦ ρ(I − ωA) < 1 means (I − ωA)xk is smaller in magnitude than xk

◦ if ‖I − ωA‖ < 1 then (3) converges1

1recall ρ(B) ≤ ‖B‖ in any induced matrix norm
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convergence lemma

Lemma

yk+1 = Myk + c

converges to the solution of y = My + c for all initial y0 if and only if

ρ(M) < 1.

Proof.
Solve the iteration by writing out a few cases:

y2 = M(My0 + c) + c = M2y0 + (I + M)c,

y3 = M(M2y0 + (I + M)c) + c = M3y0 + (I + M + M2)c,

...

By induction we get yk = Mk y0 + pk (M)c where pk (x) = 1 + x + x2 + · · ·+ xk−1. But
pk (x)→ 1/(1− x) as k →∞ iff x ∈ (−1, 1). Also, ρ(M) < 1 iff Mk → 0. Thus
yk → (I −M)−1c iff ρ(M) < 1.
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convergence of the Richardson iteration 2

since the Richardson iteration converges iff ρ(I − ωA) < 1, we choose ω
based on the principle that

ωA should be close to the identity I
◦ often not possible!

in small cases we can graph f (ω) = ρ(I − ωA):

omega = -1:.01:1;
rho = zeros(size(omega));
for j = 1:length(omega)

M = eye(n) - omega(j) * A;
rho(j) = max(abs(eig(M)));

end
plot(omega,rho)

for LS1: ρ(I − ωA) dips below 1 for 0 < ω . 0.6

for LS2: ρ(I − ωA) ≥ 1 always -1 -0.5 0 0.5 1
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note ρ(I − 0A) = 1 . . . so no convergence when ω ≈ 0
for LS1, figure suggests ω ≈ 0.4 gives fastest convergence
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matrix splitting

unlike Richardson, most classical iteration methods “split” the matrix A
before iterating
the best known, and simplest, iteration based on splitting is Jacobi
iteration, which extracts the diagonal of A (and inverts it)
the splitting we consider is

A = D − L− U
where
◦ D is the diagonal of A
◦ L is strictly lower triangular (`ij = 0 if i ≤ j)
◦ U is strictly upper triangular (uij = 0 if i ≥ j)

you can split any matrix this way
see section 4.2 of the textbook

so that D is an invertible matrix, for the remaining slides we assume
all diagonal entries of A are nonzero: aii 6= 0
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Jacobi iteration

the Jacobi iteration is

Dxk+1 = b + (L + U)xk (4)

if it converges then Dx = b + (L + U)x, which is the same as Ax = b
we could also write it as xk+1 = D−1 (b + (L + U)xk ) or as

x (k+1)
i =

1
aii

bi −
∑
j 6=i

aijx
(k)
j

 (5)

where x (k)
j denotes the j th entry of the k th iterate xk

make sure you understand why (4) and (5) are the same!
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Gauss-Seidel iteration

Gauss-Seidel iteration extracts the non-strict lower-triangular part of A
(and inverts it)
again if A = D − L− U then it is

(D − L)xk+1 = b + Uxk (6)

we could also write it “ xk+1 = (D − L)−1 (b + Uxk ) ” but that would
miss the point!
instead we write it as Dxk+1 = b + Uxk + Lxk+1 or equivalently:

x (k+1)
i =

1
aii

bi −
∑
j>i

aijx
(k)
j −

∑
j<i

aijx
(k+1)
j

 (7)

the lower-triangular entries of A apply to those entries of xk+1 which have
already been computed
form (7) is actually easier to implement than Jacobi (5) (why?)

Ed Bueler (MATH 615 NADEs) Classical iterative methods for linear systems Spring 2017 12 / 17



convergence conditions for Jacobi and Gauss-Seidel

the convergence lemma says that
◦ Jacobi iteration converges if and only if ρ(D−1(L + U)) < 1
◦ Gauss-Seidel iteration converges if and only if ρ((D − L)−1U) < 1

these conditions are hard to use in practice because computing a
spectral radius can be just as hard as solving the original system
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diagonally-dominant matrices

definition. A is strictly diagonally-dominant if |aii | >
∑

j 6=i |aij |
◦ LS1 is strictly diagonally-dominant
◦ LS2 is not

two relatively-famous theorems2 are these:
◦ theorem. if A is strictly diagonally-dominant then both the Jacobi and

Gauss-Seidel iterations converge
◦ Theorem. if A is symmetric positive definite then Gauss-Seidel iteration

converges

unlike the “ρ(. . . ) < 1” conditions on the last slide:
◦ it is easy to check diagonal-dominance, and it is a common property of the

matrices coming from FD schemes on ODEs and PDEs
◦ these are only sufficient conditions, e.g. there are nonsymmetric A, which

are not diagonally-dominant, but for which the iterations converge

see problems P19 and P20

2section 11.2 of Golub and van Loan, Matrix Computations, 4th edition 2013
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past

the Jacobi and Gauss-Seidel iterations are from the 19th century
◦ Richardson iteration first appears in a 1910 publication

the early history of numerical partial differential equations, e.g. in the
1920 to 1970 period, heavily used these classical iterations
◦ a generalization of Gauss-Seidel iteration called successive over-relaxation,

was a particular favorite around 1970; see section 4.2 of the textbook

none of these iterations work on system LS2
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recent past and future

there are better iterative ideas, and they flourished starting in the
1980-90s . . . and far into the future
◦ among the best known are CG = conjugate gradients (actually from

1950-60s) and GMRES = generalized minimum residuals (from a 1986
paper by Saad and Schultz)

◦ GMRES works (i.e. converges at some rate) on LS2
◦ but there can be no “good iteration” with a universally-fast convergence rate3

iteration to solve linear systems is the future:
◦ it is obligatory on sufficiently-big systems
◦ it works better in parallel than direct methods like Gauss elimination
◦ it can exploit partial knowledge of the underlying model

3remarkably, there is a 1992 theorem by Nachtigal, Reddy, and Trefethen that says this
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biographies

Gauss (1777–1855) did big stuff, not just the little Gauss-Seidel thing:
en.wikipedia.org/wiki/Carl_Friedrich_Gauss

Jacobi (1804–1851) also has his name on the “Jacobian”, the matrix of
derivatives appearing in Newton’s method for systems of equations:

en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi

Seidel (1821–1896) is relatively little known:
en.wikipedia.org/wiki/Philipp_Ludwig_von_Seidel

Richardson (1881–1953) is the most interesting. He invented numerical weather
forecasting, doing it by-hand for fun during WWI. Later, as a pacifist and quaker,
he quit the subject entirely when he found his meteorological work was of most
value to chemical weapons engineers and the British Air Force:

en.wikipedia.org/wiki/Lewis_Fry_Richardson
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