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example linear systems

@ suppose we want to solve the linear system

Ax=Db

where Ac R™ ™M and b € R™, to find x € R™.

@ throughout these notes we use just two examples:

LS1
2 1 0
0 2 1
10 3
LS2
1 2 3
2 1 -2
—1 1 1
0 1 1
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@ on P17 (Assignment #5) you will check that these are well-conditioned

linear systems

@ itis trivial to find solutions of LS1, LS2 using a “x = A\b” black box, but
these examples stand-in for the large linear systems we get from
applying FD schemes to ODE and PDE problems
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residual

@ the residual of a vector v in linear system (1) is the vector
r(v) =b— Av (@)
@ making the residual zero is the same as solving the system:
Ax=b < r(x)=0

@ evaluating r(v) needs a matrix-vector product and a vector subtraction
o requires O(m?) operations at worst
o by comparison, applying Gauss elimination to solve linear system (1) is an

O(m?®) operation in general
@ FD schemes for DEs generate matrices A for which the majority, often
99% or more, of the entries are zero

o a matrix with enough zeros to allow exploitation of that fact is called sparse
o evaluating the residual of a sparse matrix typically requires O(m) operations
o evenif Ais sparse, A~ is generally dense, i.e. most entries are nonzero

Ed Bueler (MATH 615 NADEs) Classical iterative methods for linear systems Spring 2017 3/17



Richardson iteration

@ iterative methods for linear system (1) attempt to solve it based only on
operations like computing the residual, or applying A to a vector

o one wants the sequence of approximations, the iterates, to converge to the
solution x = A~'b
o lterative methods always require an initial iterate xo

@ Richardson iteration adds a multiple w of the last residual at each step:
Xk41 = Xk + w(b — AXk) (3)

@ for system LS1, using initial iterate xo = 0 and w = 1/5, (3) gives:

0 0.4 0.6 0.728 0.998
Xo=|0],Xs=[02]|,%=|0.16]| ,x3= |0.088] , ..., x50 = [—0.017] ,...
0 0.8 1.04 1.096 1.01

these iterates seem to be converging to x = [1 0 1], which is the solution to LS1
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recall: eigenvalues and vectors

@ a complex number A € C is an eigenvalue of a square matrix B € R™*" if
there is a nonzero vector v € C™ so that Bv = \v

@ the set of all eigenvalues of B is the spectrum o(B) of B
@ the spectral radius p(B) is the maximum absolute value of an eigenvalue:

B) = max |\
p(B) )\ea(B)| \

@ even if Bis real, A may be complex—the roots of a polynomial with real
coefficients may be complex—and if A is complex and B is real then v
must be complex
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spectral properties and convergence of iterations

@ properties of a matrix B described in terms of eigenvalues are generically
called spectral properties
@ some examples:
o p(B)
o ||Bll2 = /p(BTB)
o the 2-norm condition number x(B) = ||B||2||B~"|J2

@ ageneral idea:

whether an iterative method for solving Ax = b converges, or
not, depends on spectral properties of A, or on matrices built
from A

@ the right-hand side b and the initial iterate xy generally do not determine

whether an iteration converges
o a good choice of xo can speed up convergence
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convergence of the Richardson iteration

@ rewrite the Richardson iteration (3) as
Xk+1 = (I — wA)X, + wb

@ the lemma on the next slide shows that the Richardson iteration
converges if and only if all the eigenvalues of the matrix / — wA are inside
the unit circle:

(8) converges if and only if p(/ — wA) < 1

o p(I —wA) < 1 means (I — wA)Xxx is smaller in magnitude than xx
o if ||/ — wA|| < 1 then (3) converges'

Trecall p(B) < ||B|| in any induced matrix norm
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convergence lemma

Lemma

Yit1 = Myx+c¢
converges to the solution of y = My + ¢ for all initial yo if and only if

p(M) < 1.

Proof.
Solve the iteration by writing out a few cases:

Y2 = M(Myo + ¢) + ¢ = MPy, + (I + M)c,
Yz = M(M?yo + (I + M)c) + ¢ = Myq + (I + M + M?)c,

By induction we get yx = M¥y, + px(M)c where px(x) =1+ x + x>+ - + x*~1. But
pk(X) = 1/(1 — x) as k — oo iff x € (—1,1). Also, p(M) < 1 iff M* — 0. Thus
Vi = (I — M)~ciff p(M) < 1. 0

v
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convergence of the Richardson iteration 2

@ since the Richardson iteration converges iff p(/ — wA) < 1, we choose w

based on the principle that

wA should be close to the identity /

o often not possible!

@ in small cases we can graph f(w) = p(/ — wA):

omega = -1:.01:1;
rho = zeros(size (omega));
for j = 1l:length (omega)

M = eye(n) - omega(j)

Aj
).

’

*
rho (j) = max (abs(eig(M))
end
plot (omega, rho)

for LS1: p(/ — wA) dips below 1 for 0 < w < 0.6
for LS2: p(I —wA) > 1 always

@ note p(/ — 0A) =1

tho(l - omega A)

2

A\

=—Ls1

\

—Ls2

05

S0 no convergence when w ~ 0

omega

@ for LS1, figure suggests w ~ 0.4 gives fastest convergence

Ed Bueler (MATH 615 NADEs)

Classical iterative methods for linear systems

05

Spring 2017

9/17



matrix splitting

@ unlike Richardson, most classical iteration methods “split” the matrix A
before iterating

@ the best known, and simplest, iteration based on splitting is Jacobi
iteration, which extracts the diagonal of A (and inverts it)

@ the splitting we consider is

A=D-L-U
where

o Dis the diagonal of A
o Lis strictly lower triangular (¢; = 0 if i < j)
o U is strictly upper triangular (u; = 0 if i > j)

@ you can split any matrix this way
@ see section 4.2 of the textbook

@ so that D is an invertible matrix, for the remaining slides we assume
all diagonal entries of A are nonzero:  a; # 0
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Jacobi iteration

@ the Jacobi iteration is
Dxy1 =b + (L+ U)xk (4)

o if it converges then Dx = b + (L + U)x, which is the same as Ax =b
@ we could also writeitas X1 = D' (b+ (L+ U)xx) oras

1
XI.(k+1) = a— b,‘ — Z a,lXj(k) (5)
! j#i
where xj(k) denotes the jth entry of the kth iterate x,

@ make sure you understand why (4) and (5) are the same!
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Gauss-Seidel iteration

@ Gauss-Seidel iteration extracts the non-strict lower-triangular part of A
(and inverts it)

@ againif A=D—L— Uthenitis
(D — L)Xky1 = b+ Uxk (6)

@ we could also write it “Xx1 = (D — L)™' (b+ Uxx)” but that would
miss the point!

@ instead we write itas  Dxy1 = b+ Uxk + Xk, 1 oOr equivalently:

1
e LD IL A I )
! j>i j<i

@ the lower-triangular entries of A apply to those entries of X1 which have
already been computed

e form (7) is actually easier to implement than Jacobi (5) (why?)
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convergence conditions for Jacobi and Gauss-Seidel

@ the convergence lemma says that

o Jacobi iteration converges if and only if p(D~'(L + U)) < 1
o Gauss-Seidel iteration converges if and only if p((D — L)~'U) < 1

@ these conditions are hard to use in practice because computing a
spectral radius can be just as hard as solving the original system
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diagonally-dominant matrices

e definition. Ais strictly diagonally-dominantif |ai| > 3~ ; |ajl
o LS1 is strictly diagonally-dominant
o LS2is not

@ two relatively-famous theorems? are these:

o theorem. if Ais strictly diagonally-dominant then both the Jacobi and
Gauss-Seidel iterations converge

o Theorem. if A is symmetric positive definite then Gauss-Seidel iteration
converges

@ unlike the “p(...) < 1” conditions on the last slide:

o it is easy to check diagonal-dominance, and it is a common property of the
matrices coming from FD schemes on ODEs and PDEs

o these are only sufficient conditions, e.g. there are nonsymmetric A, which
are not diagonally-dominant, but for which the iterations converge

@ see problems P19 and P20

2section 11.2 of Golub and van Loan, Matrix Computations, 4th-edition 2013
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past

@ the Jacobi and Gauss-Seidel iterations are from the 19th century
o Richardson iteration first appears in a 1910 publication

@ the early history of numerical partial differential equations, e.g. in the
1920 to 1970 period, heavily used these classical iterations

o ageneralization of Gauss-Seidel iteration called successive over-relaxation,
was a particular favorite around 1970; see section 4.2 of the textbook

@ none of these iterations work on system LS2
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recent past and future

@ there are better iterative ideas, and they flourished starting in the
1980-90s ... and far into the future
o among the best known are CG = conjugate gradients (actually from
1950-60s) and GMRES = generalized minimum residuals (from a 1986
paper by Saad and Schultz)
o GMRES works (i.e. converges at some rate) on LS2
o butthere can be no “good iteration” with a universally-fast convergence rate®

@ iteration to solve linear systems is the future:
o it is obligatory on sufficiently-big systems
o it works better in parallel than direct methods like Gauss elimination
o it can exploit partial knowledge of the underlying model

Sremarkably, there is a 1992 theorem by Nachtigal, Reddy, and Trefethen that says this
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biographies

@ Gauss (1777-1855) did big stuff, not just the little Gauss-Seidel thing:

en.wikipedia.org/wiki/Carl_Friedrich_Gauss

@ Jacobi (1804—-1851) also has his name on the “Jacobian”, the matrix of
derivatives appearing in Newton’s method for systems of equations:
en.wikipedia.org/wiki/Carl_Gustav_Jacob_Jacobi

@ Seidel (1821-1896) is relatively little known:
en.wikipedia.org/wiki/Philipp_Ludwig_von_Seidel

@ Richardson (1881-1953) is the most interesting. He invented numerical weather
forecasting, doing it by-hand for fun during WWI. Later, as a pacifist and quaker,
he quit the subject entirely when he found his meteorological work was of most
value to chemical weapons engineers and the British Air Force:

en.wikipedia.org/wiki/Lewis_Fry_Richardson
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